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Four Laws of Thermodynamics vs
Four Laws of Black Hole mechanics

There is a remarkable analogy between the laws of thermodynamics and the
laws of black hole mechanics

Thermodynamics

0. E, T, S, V, P, ...

1. dE = TdS − PdV

2. δS ≥ 0

3. S → 0 if T → 0

Black Hole mechanics
(Bardeen, Carter, Hawking,73’; Bekenstein 73’)

0. surface gravity κ = 1
M

, Q, a, ...

1. dM = 1
8πM

d A
4
+ ...

2. δA ≥ 0

3. States with κ = 0 are unattainable
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laws of black hole mechanics

Thermodynamics

0. E, T, S, V, P, ...

1. dE = TdS − PdV

2. δS ≥ 0

3. S → 0 if T → 0

Black Hole mechanics
(Bardeen, Carter, Hawking,73’; Bekenstein 73’)

0. surface gravity κ = 1
M

, Q, a, ...

1. dM = 1
8πM

d A
4
+ ...

2. δA ≥ 0

3. States with κ = 0 are unattainable

A missing link in this area is a precise statistical mechanical interpretation
of entropies for all varieties of black holes.
We can try to find a statistical mechanics model with the same dependence
of entropy on other thermodynamic variables as a particular black hole has
However, there is a problem with the third law of thermodynamics
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Third Law of Thermodynamics

In the Planck formulation : Entropy S → 0 as T → 0 (β = 1
T → ∞)

In the Nernst formulation

δS(T, x) ≡ S(T, x)− S(T, x′) → 0 as T → 0 (1)

or
lim
T→0

S(T, x)− universal constant

Unattainability of T = 0

REFS: W.Israel, 1986; R.Wald, 1997;
F. Belgiorno and M. Martellini, 2004;
C. Kehle and R. Unger, 2211.1574.
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Violation of Third Law in BH Thermodynamics

Schwarzschild black hole
Hawking temperature T = 1

8πM

Bekenstein-Hawking entropy S = 1
16πT2 → ∞ as T → 0

Violation in Planck formulation

Reissner-Nordstrom black hole
Hawking temperature T =

√
M2−Q2

2π
(√

M2−Q2+M
)2 → 0 for M → Q or M → ∞

BH entropy S = π
(√

M2 −Q2 +M
)2

→ πQ2 for T → 0 depends on Q

Kerr
Violation in Nernst formulation
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Physical systems with violation of the Third Law *

Lattice models.
The question of whether the third law is satisfied can be decided completely
in terms of ground-state degeneracies
M. Aizenman, El. Lieb 80’

Ice models.
V. F. Petrenko and R. W. Whitworth, 99’, Physics of Ice

Strange metals.
J. Zaanen et al. 15’, Holographic duality in condensed matter physics.
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Few Refs. on microscopic origin of BH entropy *
The problem of the microscopic origin of the Bekenstein-Hawking
entropy of a black hole has attracted a lot of attention over the
past 30 years

Wheeler considered of the BH interior as ”bag of gold” (Almheiri et al 20)

Strominger and Vafa, 96’ ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
3,

f(r) =
(
1− ( r0

r
)2
)2
, r0 = (

8QHQ2
F

π2 )1/6, SBH = 2π

√
QHQ2

F
2

D-0 branes interpretation: d(n, c) ∼ exp(2π
√

nc
6
), c = 6( 1

2
Q2

F + 1), n = QH

Sstat = ln d(QF , QH) ∼ 2π

√
QH(

1

2
Q2

F + 1)

’t Hooft 84’ proposed to relate BH entropy with the entropy of thermally
excited quantum fields in the vicinity of the horizon.

Recent searches Balasubramanian et al 22’ for internal geometries that
provide the entropy of BH.

Matrix models corresponding to BH in spacetime with topology AdS2 × S8,
Maldacena’23

I. Aref’eva Gas of shells as microscopic origin of black holes entropy Nonlinearity III 6 / 25



Summary of Introduction

Schwarzschild BHs violate 3-d law of thermodynamics.

Schwarzschild BH entropies in D-dim S → ∞ rather than zero
when T → 0.

We search for quantum statistical models with such exotic
thermodynamic behaviour.

A special interest present the models that are related with
gravity, i.e. models that contain GN . We will discuss a special class
of such models — thin shells in GR.
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Free energy of non-local Bose gas (NLBG).

d-dim Bose gas

FBG(d, ε) =
Ωd−1

β

∫ ∞

0

ln
(
1− e−λβ ε(k)

)
kd−1dk

standard (local case) ε(k) = k2

d-dim α-non-local Bose gas ε(k) = kα, FBG(d, α) = FBG(d, ε)
∣∣∣
ε=kα

d-dim F-non-local Bose gas, F(k) -an analytical function.
F(k) = exp(ck2). SFT: IA, astro-ph/0410443;

p-adics: V.S.Vladimirov, see B.Dragovich’s talk.

Explicit form

FBG(d, α) = − 2πd/2

dΓ(d/2)

(
1

β

) d
α+1 (

1

λ

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)
.

Free energy of D-dim Schwarzschild BH FBH(D,β) [see next slides]

Our stategy: FBH(D,β) = FBG(d, β)
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D=4 Schwarzschild BH vs Bose Gas. 1/3

Schwarzschild solution

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2,

Hawking temperature and Bekenstein-Hawking entropy

T =
1

8πM
, S = 4πM2 =

β2

16π

Free energy

F =
β

16π
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D=4 Schwarzschild BH vs Bose Gas. 2/3

Equalizing: FBG(β) = FBH(β)

− πd/2

β
d
2+1λ

d
2

ζ

(
d

2
+ 1

)
=

β

16π
(∗)

To fulfill (*) we have to assume

d = − 4, λ2 = − π

16 ζ(−1)
.

Taking into account that ζ(−1) = −1/12, we get

λ =

√
3π

4
,
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D=4 Schwarzschild BH vs Bose Gas. 3/3

Therefore, we obtain that the thermodynamics of the 4-dim Schwarzschild
BH is equivalent to the thermodynamics of the Bose gas in d = − 4 spatial
dimensions.
We understand the thermodynamics of the Bose gas in negative spatial
dimensions in the sense of the analytical continuation of the right hand site
of

FBG = − πd/2

β
d
2+1λ

d
2

ζ

(
d

2
+ 1

)
.
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D>4 Schwarzschild BH vs Bose Gas 1/4

D-dimensional Schwarzschild black hole, D ≥ 4,

ds2 = −
(
1− rh

D−3

rD−3

)
dt2 +

dr2

1− rhD−3

rD−3

+ r2dω2
D−2,

Hawking temperature T = 1/β = D−3
4πrh

rh is the radius of the horizon.
The entropy and the free energy are

S =
ΩD−2

4

(
D − 3

4π

1

T

)D−2

; F =
(D − 3)D−3βD−3 ΩD−2

4(4π)D−2

S → ∞, when T → 0 — a violation of the 3-d law
Equalizing: FBG(β) = FBH(β) series of solutions

I.Volovich’s talk
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D>4 Schwarzschild BH vs Bose Gas. 2/4

4 series of solutions

D d α
D = 4k + 1, k = 1, 2, 3... d = (4k − 1)|α| α = −q, q = 1, 2, 3

D = 4k + 1, k = 1, 2, 3... d = −(4k − 1)α 4r
4k−1

< α <
2(2r+1)
4k−1

, r = 0, 1, 2, ...

D = 4k + 3, k = 1, 2, 3... d = −(4k + 1)α
2(2r+1)
4k+1

< α <
4(r+1)
4k+1

, r = 0, 1, 2...

D = 2k, k = 2, 3, 4... d = −2(k − 1)α α = p
k−1

, p = 1, 2, ..

Euclid d = 3
Kaluza-Klein d = 5
Superstrings d = 10
Here d < 0
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D>4 Schwarzschild BH vs Bose Gas 3/4

−
(

L

2π

)d πd/2

Γ( d
2
+ 1)

(
1

β

) d
α
+1 ( 1

λα

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)
=

(D − 3)D−3

4GD(4π)D−2
βD−3 2π

D−1
2

Γ(D−1
2

)

To equalize the powers of β we take d = − (D − 2)α and we get

FBG = −
(

2

L

)(D−2)α π
(D−2)α

2

Γ(1− (D−2)α
2

)
βD−1 λD−2

α Γ (3−D) ζ (3−D)︸ ︷︷ ︸
ζ(D−2)

2D−2πD−3 sin(
π(D−2)

2
)

λα =
(
B(D,α)A(D,α)

)1/(D−2)
where B(D,α) = −Γ

(
1− (D−2)α

2

)
sin

(
π(D−2)

2

)
A(D,α) = Lα(D−2)

GD

(D − 3)D−3

ζ(D − 2)Γ(D−1
2

)︸ ︷︷ ︸
>0,forD>4

2...π...

Since D is a natural number,

sin(
π(D − 2)

2
) =

 1 for D = 4k + 3, k = 1, 2, 3, ...
0 for D = 2k, k = 2, 3, 4, ...
−1 for D = 4k + 1, k = 1, 2, 3, ...

.

Let consider the 3rd case. Γ(...) > 0 ⇒ α < 0
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D>4 Schwarzschild BH vs Bose Gas 4/4

This 3-rd solution corresponds to 1-st line in the table. D = 4k + 1.
k = 1, D = 5 we have solutions with α = −1,−2, ....

d = − (D − 2)α.

In these cases

d = 3, α = −1, λ−1 =
1

2 3
√
G5L

3

√
− 3π

ζ ′(−2)
=

3.38
3
√
G5L

,

d = 6, α = −2, λ−2 =
2

3
√
G5L2

3

√
− 3π2

ζ ′(−2)
=

19.814
3
√
G5L2

.
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Gas of random quantum thin shells

A spherical symmetric thin shell Σ = R× S2 in spherical symmetric
background divides the spacetime on

the internal spacetime, M− (with Schw. coord. (t−, r−, ϕθ)), and
an external spacetime, M+(with Schw. coord. t+, r+, ϕ, θ)

The shell can be describe by equations

r± = r = R(τ), t± = t(τ).

In term of intrinsic coord. of the shell (τ, θ, ϕ), the induced metric on Σ is

ds2Σ = dτ2 −R2(τ)dΩ2

Berezin, Kusmin,Tkachev,1988
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Effective action for the shell

The effective action for the shell in the proper time

S =

∫
dτ

[
−m+ f(R)

√
1 +R2

τ

]
, f(R) =

Gm2

2R

Hamiltonian
H = m−

√
f2 − P 2,

Wheeler-DeWitt equation[
(−i∂τ +m)2 − ∂2R − f2

]
Ψ(τ,R) = 0.
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Stationary solutions of WdW eq. Spectrum

Taking Ψ(τ,R) in the form

Ψ(τ,R) = e−iEτψ(R),

we get the stationary version WdW eq.

ψ′′(R)−
[
(m− E)2 − m4

4m4
pR

2

]
ψ(R) = 0, (∗)

m is the shell mass, mp is the Planck mass, mp = 1/
√
G, G is the Newton

gravitational constant. ℏ = c = 1.
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Spectrum

The spectrum of equation (*) for m > mp is Vaz, 2022

En(m) = m
(
1− e−nπ/b

)
, (∗∗)

b =
1

2m2
p

√
m4 −m4

p, mp < m

n is a positive integer.
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Free energy of bose gas of shells

The free energy of bose gas of shells at temperature T = 1/β and chemical
potential µ

Fgas−of−shells(β, µ,m) =
1

β

∑
n

ln
(
1− eβ (µ−En(m))

)
here En(m), n = 1, 2, 3, ... is the spectrum (**)
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Free energy of RANDOM bose gas of shells, 1/4

At temperature T = 1/β

Fgas−of−shells(β, µ,mp)

=
1

β

∫ N∑
n

ln
(
1− eβ (µ−En(m))

)
dσ(m)

En(m), n = 1, 2, 3, ... is spectrum (**) for fixed random parameter m
˙
dσ = dσ(m) is the probability measure
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Free energy of random bose gas of shells, 2/4

Now we specify the measure σ = σ(m) and deal with Fgas−of−shells(β, µ,mp)
given by

Fgas−of−shells(β, µ,mp) =
1

β

∫ 2mp

mp(1+∆)

N∑
n

ln
(
1− eβ (µ−En(m))

) C dm

(m−mp)3
,

where ∆ > 0 is the regularization parameter and the constant C is derive from
normalization

C−1 =

∫ 2mp

mp(1+∆)

dm

(m−mp)3

and for small regularization parameter ∆

C =
2∆2m2

p

1−∆2
≈ 2m2

p∆
2
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Free energy of random bose gas of shells, 3/4

After the change of the variable m−mp = xmp and taking
En(m) ≈ m = mp(1 + x) we get the representation

Fgas.shells(β, µ,mp) =
2N∆2

β

∫ 1

∆

ln
(
1− eβ (µ−mp(1+x))

) dx
x3
,

Taking µ = mp we finally get

Fgas.shells(β,mp) ≈
2N∆2

β

∫ 1

∆

ln
(
1− e−βmpx

) dx
x3
,

I(a) =

∫ ∞

a

ln
(
1− e−x

) dx
x3
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Free energy of random bose gas of shells, 4/4

Denote N∆2 = λ and consider ∆ → 0 and N → ∞,

NβC I(a) = Nβ2m2
p ∆

2 I(a) = 2m2
pλβ I(a)

Taking the renormalized value of I we get at a→ 0

Fren,gas−of−shells(β,mp) ≈ 2λ Irenm
2
pβ

and the entropy is equal to

S = 2λIrenm
2
pβ

2

We set 2λIren = 1
16π . This gives the BH entropy

S =
1

16π
m2

pβ
2 =

1

16πG
β2 = 4πGM2
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Equivalence of ζ-function analytical renormalization
and minimal subtraction scheme

"Cut-off"regularization I(a) =
∫∞
a

log(1−e−x)
x3 dx.

I(a) =
log(a)

2a2
+

1

4a2
− 1

2a
− log(a)

24
+ 0.121+O(a), Iren

∣∣∣
s=−1

= 0.121

ζ-function regularization

J(s) =

∫ ∞

0

ln(1− e−x)
dx

x2−s
= −Γ(−1 + s)ζ(s) (2)

well defined for ℜs > 1 and is singular at s = −1

J(s) =
1

24(s+ 1)
+

24 log(A) + 1− 2γ

48
+O (s+ 1)

=
0.0416

s+ 1
+ 0.121+ ... A− Glaisher const = 1.282; γ − Euler const

Jren

∣∣∣
s=−1

= 0.121, Iren

∣∣∣
s=−1

= Jren

∣∣∣
s=−1

I.A. and I.Volovich, 2305.19827
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Conclusion

Black holes violet the third law of thermodynamics

Model of bose gas violeting the third law of thermodynamics is proposed

Random quantum gas of thin shells reproducing the black hole entropy is
proposed

I. Aref’eva Gas of shells as microscopic origin of black holes entropy Nonlinearity III 25 / 25



Backup. Equivalence of renormalization

Analytical regularization. The starting point

I(s) =

∫ ∞

0

ln
(
1− e−x

) dx

x1+s
= −Γ(−s) ζ(−s+ 1), ℜs < 0 (3)

However, the right-hand side of (3) is well defined for all s ̸= 0 and s ̸= n, here
n ∈ Z+ and we denote it by I(s),

I(s) = −Γ(−s) ζ(−s+ 1). (4)

The function I(s) given by (4) is a meromorphic function for s ∈ C. It has poles
at s = n > 0 and a double pole at n = 0. We define Iren(n) as

Iren(n) ≡ lim
ϵ→0

[−Γ(−n+ ϵ)ζ(1− n+ ϵ)− Pole Part [(−Γ(−n+ ϵ)ζ(1− n+ ϵ)]]

at point n = 1, 2, 3, ...

Iren(0) ≡ lim
ϵ→0

[−Γ(ϵ)ζ(1 + ϵ)− Double Pole Part [(−Γ(ϵ)ζ(1 + ϵ)]]

Iren(s) ≡ I, s > 0, s ̸= Z+ .
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Backup. Equivalence of renormalization

Lemma 1. The renormalized version of (3) after analytical
renormalizations is given by

Iren(n) = −


(−1)n

n!

[
ζ ′(1− n) +

(
−γ +

∑n
k=1

1
k

)
ζ(1− n)

]
, n = 1, 2, 3...

1
12

(
12γ1 + 6γ2 − π2

)
, n = 0
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Backup. Equivalence of renormalization

Cut-off regularizations. The starting point

I(s, a) ≡
∫ ∞

a

ln
(
1− e−x

) dx

x1+s
, a > 0.

We find a singular part of the asymptotics of the integral I(s, a) as a→ 0 in the
form

S(s, a) =
∑
i≥0

Ai
log a

ai
+
∑
i≥1

Ci
1

ai
.

Then we subtract this singular part S(s, a)

Iren(s, a) = I(s, a)− S(s, a),

and finally remove the regularisation

Iren(s) = lim
a→0

Iren(s, a).
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Backup. Equivalence of renormalization

Lemma 2 The renormalized version of I(s, a) after minimal
renormalizations is

Iren(s) =

∫ 1

0

1

xs+1

[
ln
(1− e−x

x

)
−

n(s)∑
k=1

ckx
k
]
dx

− 1

s2
+

n(s)∑
k=1

ck
k − s

+

∫ ∞

1

1

xs+1
ln
(
1− e−x

)
dx ,

n(s) = Entier[s], i.e the integer part of s.
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Backup. Equivalence of renormalization

Theorem. The minimal renormalized free energyfor s = n ̸= 0 and the
analytic renormalized free energy coincide

Iren(n) = Iren(n).

and
Iren(s) = I(s), for s > 0 and s ̸= n ∈ Z+.
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