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Abstract

The presentation will o¤er a general overview on what symmetry means in two (apparently)
di¤erent domains, QFT and nonlinear dynamics. Two fundamental type of symmetries, point-
like and gauge-type symmetries will be considered. General approaches using the classical
(Lie) or the non-classical (Bluman-Cole) symmetries will be used to investigate some nonlinear
mechanical models arising from Quantum contexts.
Keywords: Lie symmetries, invariants, similarity reduction.

1 Aim of the paper

The nonlinear di¤erential equations can accept di¤erent classes of solutions and there is no clear
algorithm on how to obtain them.

Many approaches and solving methods have been proposed and hundreds of papers claim to
report new solutions for various nonlinear equation.

The main question: how the solutions of a given equation can be classi�ed and how we can
decide whether a particular solution is really a new one?

Our claim: the independent classes of solutions correspond to the invariant solutions provided
by the optimal system of Lie algebras.

2 The integrability of the nonlinear dynamical systems

Sometimes it is di¢ cult to �nd solutions and it is enough if one can decide on the integrability of
the system.

For autonomous Hamiltonian systems, the simplest meaning of integrability consists in the
existence of invariant quantities fCig in involution:

dCi
dt

= fH;Cig = 0; fCi; Cjg = 0

When the number of these invariants is equal to the number of degrees of freedom of the system,
the system is said to be integrable.

Methods that can be used to investigate the integrability of a system:
(i) the inverse scattering method
(ii) the Lax method
(iii) the Painleve approach
(iv) the Hirota�s bilinear method
(v) the Lie symmetry method - investigated in this presentation.
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3 Symmetries and classes of invariant solutions for NPDEs

3.1 The classical symmetry method

The classical symmetry method (CSM). Let us consider a n-th order partial di¤erential system:

��(x; u
(n)[x]) = 0 (1)

with the independent variables x � fxi; i = 1; pg � Rp, the dependent ones u � fu�; � = 1; qg � Rq
, and with u(n)the set of the partial derivatives of u up to n-th order.

The Lie symmetries represent the set of all the in�nitesimal transformations which keep invariant
the classes of solutions for the di¤erential system (1). The invariance condition is:

X(n)[�] p�=0= 0 (2)

where the general in�nitesimal symmetry operator has the form:

X =

pX
i=1

�i(x; u)
@

@xi
+

qX
�=1

��(x; u)
@

@u�
(3)

The n-th extension is given by:

X(n) = X +

qX
�=1

X
J

�J�(x; u
(n))

@

@u�J
(4)

with: the multi-indices J = (j1; :::jm);with 1 � jm � p; 1 � m � n, u�J =
@mu�

@xj1@xj2 ::@xjm
, and

�J�(x
i; u(n)) = DJ [�� �

pX
i=1

�iu�i ] +

pX
i=1

�iu�J;i; � = 1; q (5)

DJ = Dj1Dj2 :::Djm =
d m

dxj1dxj2 ::dxjm
(6)

To the general symmetry generator (3) can be associated characteristic equations of the form:

dx1

�1
= ::: =

dxp

�p
=
du1

�1
= ::: =

duq

�q
(7)

By integrating the characteristic system of ordinary di¤erential equations (7), the invari-
ants Ir; r = 1; (p+ q � 1) of the analyzed system can be found and they become the set of similarity
variables is found.

3.2 Generalizations of the classical Lie symmetries

Several generalizations of the classical Lie symmetry method have been proposed:
- the non-classical symmetry method (NSM ) (also referred to as the conditional method) of

Bluman and Cole,
- the direct method of Clarkson and Kruskal,
- the di¤erential constraint approach of Olver and Rosenau,
- the generalized conditional symmetry.
The basic idea of NSM is that (2) should be augmented with the invariance surface condition:

Q�(x; u(1)) � ��(x; u)�
pX
i=1

�i(x; u)
@u�

@xi
= 0; � = 1; q (8)

The q�tuple Q = (Q1; Q2; :::Qq) is known as the characteristic of the symmetry operator (3).
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3.3 The generalized conditional symmetries

The generalized conditional symmetries (GCS) or conditional Lie-Bäcklund symmetries applies
when the equation (1) can be written as:

ut = E(t; x; u; ux; :::umx); (9)

The group of Lie symmetries is generated by an evolutionary vector �eld with � as its characteristic,
which admits the canonical form:

V =
1X
k=0

Dkx�
@

@ukx
(10)

- V is a Lie�Bäcklund symmetry of (9) if and only if V (ut �E) jL = 0;where L is the set of all
di¤erential consequences of the equation.

- V is a GCS of (9) if and only if V (ut�E) jL\M = 0; whereM denotes the set of all di¤erential
consequences for Djx� = 0;

- If � does not depend on t explicitly, the condition for existing GCS could be expressed in the
following terms:

�0E jL\M = 0; �0E = lim
"!0

d

d"
�(u+ "E); (11)

where "prime" denotes here the Fréchet derivative of � along the E direction.

3.4 The inverse symmetry problem (I)

The direct symmetry approach investigates the Lie algebra that can be attached to a given equation
and allows to obtain the associated invariants and to determine the classes of the invariant solutions
that can be accepted by that equation.

The inverse symmetry problem, proposed in [18], allows to �nd the largest class of evolutionary
equations which are equivalent from the point of view of their symmetries = more complicated
equationss which admit the same Lie symmetry group,

Let us formulate the problem for a 2D nonlinear system described by the following general
second order partial derivative equation:

ut = A(x; y; t; u)uxy +B(x; y; t; u)uxuy + C(x; y; t; u)u2x +D(x; y; t; u)u2y +

+E(x; y; t; u)uy + F (x; y; t; u)ux +G(x; y; t; u) (12)

The general expression of the Lie symmetry operator which leaves (12) invariant can be taken
as:

X(x; y; t; u) =
@

@t
+ �(x; y; t; u)

@

@x
+ �(x; y; t; u)

@

@y
+ �(x; y; t; u)

@

@u
: (13)

3.5 The inverse symmetry problem (II)

The invariance condition of the equation (12) is given by the relation:

0 = X(2)[ut �A(x; y; t; u)uxy �B(x; y; t; u)uxuy � C(x; y; t; u)u2x �D(x; y; t; u)u2y �
�E(x; y; t; u)uy � F (x; y; t; u)ux �G(x; y; t; u)] (14)

The previous relation has the equivalent expression:

0 = �Atuxy �Btuxuy � Ctu2x �Dtu2y � Etuy � Ftux �Gt �Ax�uxy �Bx�uxuy �
�Cx�u2x �Dx�u2y � Ex�uy � Fx�ux �Gx� �Ay�uxy �By�uxuy � Cy�u2x �Dy�u2y �
�Ey�uy � Fy�ux �Gy� �Au�uxy �Bu�uxuy � Cu�u2x �Du�u2y � Eu�uy � Fu�ux �
�Gu�+ �t �A�xy � C�2x �D�2y �B�xuy � F�x �B�yux � E�y (15)

The functions �t; �x; �y; �2x; �2y; �xy will be determined using the general formulas from Olver.
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3.6 The inverse symmetry problem (III)

By extending the relations (??), substituting them into the condition (15) and then equating with
zero the coe¢ cient functions of various monomials in derivatives of u, the following system of 11
partial di¤erential equations is obtained:

0 = �u; 0 = �u; 0 = B�x �D�2u; 0 = B�y � C�2u;

0 = A�y � �Ay �Au�+A�x � �Ax ++2D�y + 2C�x �At
0 = A�x + 2D�y � �Dy � �Dx �Du��Dt
0 = �A�2u +B�x �B�u +B�y �Bt �Bx� �Bu��By�

0 = ��t + F�x �B�x + E�y � Et � Ex� � Ey� � Eu�
+A�xy �A�xu + C�2x +D�2y � 2D�yu

0 = ��t �B�y + F�x + E�y � Ft � Fx� � Fy� � Fu�
A�xy �A�yu + C�2x +D�2y � 2C�xu

0 = �t +G�u � F�x � E�y �Gt �Gx� �Gy� �Gu�
�A�xy � C�2x �D�2y

In the direct symmetry approach: one �nds the coe¢ cient functions �(x; y; t); �(x; y; t) and
�(x; y; t; u) of the Lie operator;

In the inverse symmetry problem: one considersA(x; y; t; u); B(x; y; t; u); C(x; y; t; u); D(x; y; t; u);
E(x; y; t; u); F (x; y; t; u); G(x; y; t; u) as unknown variables.

4 Similarity solutions for the KGF equation

4.1 The KGF Equation

The equation we are going to study in this section is the Klein-Gordon-Fock (KGF) equation with
central symmetry:

v2t � v2r �
2

r
vr +

b

r2
v = 0: (16)

In the previous equation b is a real parameter.
By changing the dependent variable, v(r; t) = u(r; t)=r; the following reduced form of Eq. (16)

is obtained:

u2t � u2r +
b

r2
u = 0: (17)

Eq. (17) belongs to the class of wave equations with time-independent potential:

u2t � u2r + V (r)u = 0: (18)

where u(t; r) 2 C2(R2; R1) and the potential V (r) 2 C2(R1; R1):
In the case b = 0, Eq. (17) becomes the d�Alembert equation.
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4.2 The GCS method for the KGF Equation

The operator which generates the GCS group for (17) takes the form:

V = �
@

@u
+ (Dr�)

@

@ur
+ (Dt�)

@

@ut
+ (D2r�)

@

@u2r
+ (D2t�)

@

@u2t
+ ::: (19)

The invariance condition is:
b

r2
� �D2r� +D2t� jL\M = 0: (20)

The Eq. (17) admits GCSs if and only if

D2t� = 0; (21)

The characteristic can be taken as:

�[r; u] = u2r �H(u)u2r � P (r; u)ur �R(r; u): (22)

Taking into account the surface condition � = 0; we obtain H = 0, P (r; u) � P (r), R(r; u) =
Q(r)u+M(r):

For P (r) = k
r ; Q(r) =

m
r2
:with k and m arbitrary constants, the remaining function M(r) must

verify the ordinary di¤erential equation:

�2k
r2
M +M" � b

r2
M = 0: (23)

4.3 Invariant classes of KGF solutions

An exhaustive study on the invariant classes of KGF solutions was presented in [31]. We remind
here only one class obtained for the values of the parameters b 6= 0, b 6= m and 4b = (k� 3)(k� 1).
In this case:

P (r) =
k

r
; Q(r) = �(k � 1)(k + 3)

4r2
; M(r) = c1r

� 1+k
2 + c2r

k+3
2 : (24)

with c1; c2 arbitrary parameters, and m = � (k�1)(k+3)
4 .

The GCS operator takes the form:

VI =

�
u2r �

k

r
ur +

(k � 1)(k + 3)
4r2

u� c1r�
1+k
2 � c2r

k+3
2

�
@

@u
: (25)

By solving the invariance surface condition � = 0; we come to the solution of the KGF equation as:

u(t; r) = f(t)r(k�1)=2 + g(t)r(k+3)=2 + r(k+7)=2 +
8c1

k(k � 2)r
�(k�3)=2 �

�2[k(k + 5)(k + 7)� 2c1(k � 3)(k � 1)]
k(k + 1)(k + 3)

r(k+3)=2 +

(k � 2)(k + 5)(k + 7)� 4c1(k � 3)(k � 1)
(k � 3)(k � 1)(k � 2) r(k�1)=2: (26)

The functions f(t) and g(t) must be polynomials of second order in t:
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5 The Lie symmetry problems for 2D reaction-di¤usion equation

5.1 The reaction-di¤usion equation

The reaction-di¤usion equation is a second order parabolic equation which describes physical phe-
nomena due to the processes of reaction, di¤usion and convection.

In the simpler case when the di¤usion coe¢ cient is variable, the convection velocity is constant
and there are no sources or sinks, the equation takes the form:

ut = uu2x + uu2y � vux (27)

with di¤usion coe¢ cient u and convective velocity v = const: along to the Ox direction.
It is easy to remark that (27) results from the general class of equations (12) by choosing the

particular functions:

C(x; y; t; u) = D(x; y; t; u) = u; F (x; y; t; u) = �v
A(x; y; t; u) = B(x; y; t; u) = E(x; y; t; u) = G(x; y; t; u) � 0 (28)

5.2 Lie symmetries for the 2D reaction-di¤usion equation

The general determining system for the symmetry generators has in this case the solution:

� =
c1
2
(x� vt) + c2y + c3; � =

c1
2
y � c2(x� vt) + c4; � = c1u (29)

The Lie symmetry generator takes the expression:

X(x; y; t; u) =
@

@t
+
�c1
2
(x� vt) + c2y + c3

� @

@x
+
�c1
2
y � c2(x� vt) + c4

� @

@y
+ c1u

@

@u
(30)

Consequently, the nonlinear reaction-di¤usion equation (27) admits the 4�dimensional Lie algebra
spanned by the operators shown below:

X1 =

�
x� vt
2

�
@

@x
+
�y
2

� @

@y
+ u

@

@u
; (31)

X2 = y
@

@x
� (x� vt) @

@y
; X3 =

@

@x
;X4 =

@

@y

When the Lie algebra of these operators is computed, the only non-vanishing relations are:

[X3; X1] =
1

2
X3; [X4; X1] = X4; [X2; X3] = X4; [X4; X2] = X3 (32)

5.3 Invariant solutions for the reaction-di¤usion equation

Each operator from (31) can generate invariant solutions of the model. The invariant classes of
solutions correspond to the set of optimal subalgebras that has in this case the dimension 3. Such
an optimal subalgebra is given by {X2; X3; X1 + �X2 + �X4}.

For the operatorX2, the characteristic equations generate 3 invariants, I1 = t; I2 = vtx� x2

2 �
y2

2 ;
I3 = u, and the similarity solution:

u(t; x; y) =
2vtx� x2 � y2 � v2t2 + 2q1

4t+ 2q2
(33)
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The operator X3 yields also 3 invariants, I1 = t; I2 = y; I3 = u, and the similarity solution:

u(t; y) =
q1
2 y

2 + q3y + q4

q2 � q1t
: (34)

The third operator of the considered optimal subalgebra, X1 + �X2 + �X4, generates other 3
invariants and the invariant solution:

u(t; x; y) = � 1

2
�
�2 + 1

4

�
t� 


�
y2

2
+ �(vt� x) + �

�2
(35)

5.4 Inverse symmetry problem for the 2D reaction-di¤usion equation

Our aim is now to �nd the class of equations with generic form (12) which admits the same symme-
tries with those corresponding to 2D nonlinear convective-di¤usion equation (27). Consequently, we
have to impose that the coe¢ cient functions (29) which determine the base of symmetry operators
(31) verify the general determining system (??).

The solutions of di¤erential system (??) describe the coe¢ cient functions of the general evolu-
tionary equation (12) as follows:

A = B = 0; C = D = c3u;

E(u) =
p
u

�
c4 cos

�
c2
c1
ln(u)

�
� c5 sin

�
c2
c1
ln(u)

��
(36)

F (u) =
p
u

�
c4 sin

�
c2
c1
ln(u)

�
+ c5 cos

�
c2
c1
ln(u)

�
� v

�
G(u) = c6u

where cj ; j = 1; 6 and v are arbitrary constants.
In particular, for c3 = 1; c4 = c5 = c6 = 0 and arbitrary c1 and c2, the solution (36) generates

the 2D nonlinear reaction-di¤usion equation (27) discussed above.

6 Conclusions

� The direct symmetry method allows to obtain the classes of invariant solutions for a nonlinear
di¤erential equation using the optimal set of Lie subalgebras. Steps to be followed suppose
to determine:

(i) the general Lie algebra;
(ii) the optimal sets of independent generators (subalgebras);
(iii) the invariant solutions corresponding to each set.

� The inverse symmetry method allows to �nd the largest class of nonlinear di¤erential equa-
tions which belong to the same class as a given equation in the sense of the symmetries they
observe.

� Both direct and inverse methods were applied to two important examples of nonlinear 2D
partial derivative equations:

- The KGF equation, with an optimal system of subalgebras of dimension 4, same as the whole
symmetry algebra.

- The reaction-di¤usion equation with a maximal optimal subalgebra of dimension 3, despite
the existence of 4 independent symmetry operators.

7



References

[1] R.Constantinescu: �Symmetries, Integrability and Exact Solutions for Nonlinear Systems�,
Proceedings of the 6th MATHEMATICAL PHYSICS MEETING: Summer School and Con-
ference on Modern Mathematical Physics, Belgrade, 14-23.09.10, 153-170.

[2] Scott A.C., Nonlinear science: emergence and dynamics of coherent structures, Oxford, Oxford
University Press, 1999.

[3] W. Hereman and A. Nuseir, Mathematics and Computers in Simulation, 43 (1997),13�27.

[4]

[5]

[6] R. Hirota, The DirectMethod in Soliton Theory, Cambridge University Press, 2004.

[7] P. J.Olver, �Applications of Lie Groups to Di¤erential Equations�, GTM 107, Second edn.,
Springer-Verlag, 1993.

[8] Bluman G W and Kumei S, Symmetries and Di¤erential Equations (New York: Springer),
1989.

[9] Clarkson P A and Kruskal M D, J. Math. Phys.30, 1989, 2201�13.

[10] Olver P J and Rosenau P, Phys. Lett. A 114, 1986, 172�6.

[11] Qu C. Z., Stud. Appl. Math. 99, 1997, 107�36.

[12] Nucci M.C. and Clarkson P.A., Phys. Lett. A 184,1992 ,49-56.D.J. Arrigo, P. Brosdbridge and
J.M. Hill, Nonclassical symmetry solutions and the methods of Bluman-Cole

[13] Arrigo D.J., Brosdbridge P. and Hill J.M., J. Math. Phys. 34 (l0), 1993, 4692-4703.

[14] Levi D. and Winternitz P., J. Phys. A: Math. Gen. 22, 1989, 2915-2924.

[15] Pucci E., Similarity reductions of partial di¤erential equations, J. Phys. A 25, 2631-2640.1992.

[16] Ovsiannikov L.V., Group Analysis of Di¤erential Equations, Academic Press, New York (1982).

[17] Ruggieri M. and Valenti A., Proc. WASCOM 2005, R. Monaco, G. Mulone, S. Rionero and T.
Ruggeri eds., World Sc. Pub., Singapore, (2006),481.

[18] R. Cimpoiasu, R. Constantinescu, Nonlinear Analysis:Theory, Methods and Applications,
vol.73, Issue1, 2010, 147-153.

[19] A.F.Tenorio, Acta Math. Univ. Comenianae, Vol. LXXVII, 1(2008),141�145.

[20] A. Ahmad, Ashfaque H. Bokhari, A.H. Kara and F.D. Zaman, J. Math. Anal. Appl. 339,
2008, 175-181.

[21] R. Cimpoiasu., R. Constantinescu, Nonlinear Analysis Series A: Theory, Methods & Applica-
tions , vol.68, issue 8, (2008), 2261-2268.

[22] W. F. Ames, Nonlinear Partial Di¤erential Equations in Engineering, Academic Press, New
York, vol. I (1965), vol. II (1972).

8



[23] G. W. Bluman and S. Kumei, Symmetries and Di¤erential Equations, Appl. Math. Sci., 81,
Springer-Verlag, New York, (1989).

[24] P. E. Hydon, Symmetry Methods for Di¤erential Equations, Cambridge Texts in Applied
Mathematics, Cambridge University Press, (2000).

[25] N.H. Ibragimov, �Handbook of Lie Group Analysis of Di¤erential Equations�, Volume1,2,3
CRC Press, Boca Raton, Ann Arbor, London, Tokyo, (1994,1995,1996).

[26] G.Baumann, �Symmetry Analysis of Di¤erential Equations with Mathematica�, Telos,
Springer Verlag, New York (2000).

[27] C. J. Budd and M. D. Piggott, Geometric integration and its applications, in Handbook of
Numerical Analysis, XI, North{Holland, Amsterdam, (2003), 35-139

[28] A. D. Polyanin, Theoretical Foundations of Chemical Engineering, Vol. 38, No. 6, (2004),622�
635.

[29] A. D. Polyanin, A. I. Zhurov and A. V. Vyaz�min, Theoretical Foundations of Chemical Engi-
neering, Vol. 34, No. 5, (2000), 403�415.

[30] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Di¤erential Equations,
Chapman & Hall/CRC Press, Boca Raton, (2004), ISBN I-58488-355-3.

[31] R.Constantinescu: �Generalized conditional symmetries, related solutions and conservation
laws of the Klein-Gordon-Fock equation with central symmetry�, Rom.J.Phys. Vol 61, No.
1-2, pag 77-88, 2016

9


