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Equations of motion
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Eigenvalue problem
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If we assume O0v/R — 2A = pv/R — 2\, EOM are simplified to
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W = F(p)
Q= F'(P)Sw (VR — 2N, VR — 27),

(Guv +Nguw) (L + F(q)) + %]—"(q)SW(\/R —2A, VR —2M) = 0.

|
It is evident that EOM are satisfied if F(p) = —1 and F'(p) = 0.
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massive body. Since this model is a nonlocal generalization of general
relativity with the cosmological constant A, it is natural to consider a
generalization of the Schwarzschild-de Sitter metric starting from the
standard Schwarzschild expression
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b
A(r)

The corresponding scalar curvature R of above metric is

ds? = —A(r)de® + dr? + r2d6? + r?sin? 0dy?.

C2-2A(r) —ArA(r) = rPA"(r) 1 &7

R = ﬁﬁ[ﬁ(lfA(r))].
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Tu(r) = A o(r) + (A7) + 2 A () = 5 S [PAN DY),

where u(r) is any differentiable scalar function.
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As we concluded earlir, to find a solution of EoM it is sufficient to
solve an eigenvalue problem (/R — 2A = gv/R — 2A. Note that
here d'Alembertian [J acts in the following way:

Tu(r) = AW o)+ (A7) + 2 A () = 75 - [PAD) 5o,

where u(r) is any differentiable scalar function. Let us now consider

function A(r) in the form

Ay =1-H_2Y N,

where 1 and v are some parameters to be discussed later. Then one
can show that for our choice of A(r) holds

’ 2
R = ST 1P A0 = 2n+ 5[],
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 Dimitrijevi Denoting u(r) = v/R — 2/ and using previous results we obtain

OVR —2A = %5[ 2A(r)§\/R— 2A] = g VR —2A.

To get an approximative solution we take A(r) = 1, what is
applicable when

El<t |5/« <y f()l <,
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Under these conditions [] operator becomes a Laplacian A

AVR —2A = rlg[ﬂ%\/fL 2A] = qvVR —2A.

One can easily find eigenfunctions of /A operator

G

u(r)=— eVar4 =2 e Var,
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Then the value of A(r) and R(r) become
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where g, C; and G, are free parameters and their values should be
determined by observations.
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