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Francis Galton, 1886, the birth of the law of regression

Heredity transmissions-height, 930 children, 205 parents

Assigned a “mid-parent” height. Established the average
regression from mid-parent to offsprings and from offsprings to
mid-parent. Formulated the law of regression toward mediocrity:
When Mid-Parents are taller than mediocrity, their Children tend
to be shorter than they. When Mid-Parents are shorter than
mediocrity, their Children tend to be taller than they.



Karl Pearson, 1901, the birth of orthogonal regression

What is the hyper-plane which minimizes the mean square distance
from a given set of points in R

k , for any k ≥ 2? Pearson
formulated the problem: “... we suppose the observed variables–all
subject to error–to be plotted in plane, three-dimensioned or higher
space, and we endeavour to take a line (or plane) which will be the
‘best fit’ to such a system of points. Of course the term ‘best fit’
is really arbitrary; but a good fit will clearly be obtained if we make
the sum of the squares of the perpendiculars from the system of
points upon the line or plane a minimum.”

Figure: From [?]. Figure: From [?].



Classical vs. orthogonal regression



Classical simple regression

It is assumed that the values (x(i))Ni=1 are known, fixed values, as
for example values set up in advance in the experiment. The values
(y (i))Ni=1 are observed values of uncorrelated random variables Yi ,
i = 1, . . . ,N with the same variance σ2. A linear relationship is
assumed between the predictors x(i) and responses (y (i))Ni=1:

EYi = α+ βx(i), i = 1, . . . ,N.

Yi = α+ βx(i) + ǫi , i = 1, . . . ,N,

ǫi are the random errors and they are uncorrelated random
variables with zero expectation and the same variance σ2. In such
models the regression is of Y on x , i.e. in the vertical direction.



Errors-in-variables (EIV) models, orthogonal regression

Here predictors are known only up to some error. The observed
pairs (x(i), y (i))Ni=1 are sampled from random variables (Xi ,Yi)
with means satisfying the linear relationship

EYi = α+ β(EXi ), i = 1, . . . ,N.

Denoting EXi = ξi , the errors in variables model can be defined as

Yi = α+ βξi + ǫi , Xi = ξi + δi , i = 1, . . . ,N,

both Xi and Yi have error terms which belong to mean zero
normal distributions, such that all ǫi , i = 1, . . . ,N have the same
variance σ2

ǫ and all δi , i = 1, . . . ,N have the same variance σ2
δ .

There is a symmetry between xi and yi as they are both known
with an error. It is more natural to apply to them the orthogonal
regression, i.e. the orthogonal least square method. We will use it
under the assumption that η = σ2

ǫ /σ
2
δ is known and with an

analogue assumption in a general dimension k .



Basic definitions

A system of N points (x
(i)
1 , x

(i)
2 , . . . , x

(i)
k )Ni=1 is given. The centroid,

or the mean values of the coordinates x̄j and the variances σ2
xj
:

x̄j =
1

N

N∑

i=1

x
(i)
j , σ2

xj
=

1

N

N∑

i=1

(x
(i)
j − x̄j)

2, j = 1, . . . , k .

Due to the generality assumption, all σ2
xj
, for j = 1, . . . , k are

non-zero. Then, the correlations rjl and the covariances pjl are

rjl =
pjl

σxjσxl
, pjl =

1

N

N∑

i=1

(x
(i)
j −x̄j)(x

(i)
l −x̄l), j , l = 1, . . . , k , l 6= j .

The covariance matrix K is a (k × k) with the diagonal elements
Kjj = σ2

xj
, and the off-diagonal elements Kjl = pjl . The covariance

matrix is always symmetric positive semidefinite. Here K is
positive-definite due to the generality assumption. All its
eigenvalues are positive.



The ellipsoid of residuals and Pearson Theorems

Pearson defined the ellipsoid of residuals
∑k

j ,l=1Kjlxjxl = const.
Denote the eigenvalues of K as µk ≥ · · · ≥ µ1 > 0.

Theorem [Pearson]

The minimal mean square distance from a hyperplane to the given
set of N points is the minimal eigenvalue of K . The best-fitting
hyperplane contains the centroid, it is orthogonal to the
corresponding eigenvector of K . It is the principal coordinate
hyperplane of the ellipsoid of residuals normal to the major axis.



Confocal families in the k-dimensional space

Family of confocal quadrics

Qλ(x1, . . . , xk) :
x21

α1 − λ
+ · · ·+

x2k
αk − λ

= 1.

λ – real parameter; α1, . . . , αk – positive real constants;
Jacobi coordinates (λ1, . . . , λk): Given (x1, . . . , xk), all λj s.t.
Qλj

(x1, . . . , xk).

Figure: Confocal family of conics in
plane



Confocal conics in plane; Jacobi elliptic coordinates
C. Jacobi, Lectures on Dynamics 1842-43, published 1865, Lecture 26

“The main difficulty in integrating a given differential equation lies
in introducing convenient variables, which there is no rule for
finding. Therefore, we must travel the reverse path and after
finding some notable substitution, look for problems to which it
can be successfully applied.”

x

y

P(x0, y0)

λ = λ2

λ = λ1



Our first goal

For a given system of N points in R
k , for any k ≥ 2, under the

generality assumption, we consider all hyperplanes which equally fit
to the given system of points. For any fixed value s ≥ µ1 we
consider all hyperplanes for which the mean sum of square
distances to the given set of points is equal to s. Starting from the
ellipsoid of residuals, we effectively construct a pencil of confocal
quadrics with the following property: For each s ≥ µ1 there exists
a quadric from the confocal pencil which is the envelope of all the
hyperplanes which s-fit to the given system of points.

The ellipsoid of residuals does not belong to the confocal family of
quadrics. The construction of this confocal pencil of quadrics is
fully effective, though quite involved. The obtained pencil of
confocal quadrics is going to have the same center as the ellipsoid
of residuals and moreover, the same principal axes.



Our first goal: Example

Example

Let us recall that µ1 denotes the smallest eigenvalue of the
covariance matrix K . In the case s = µ1 there is only one
hyperplane which s fits to the given set of N points. This is the
best-fitting hyperplane described in the first Theorem of Pearson.
The envelope of this single hyperplane is this hyperplane itself.
This hyperplane is going to be a degenerate quadric from our
confocal pencil of quadrics.



Our second goal

The second goal:

For a given system of N points in R
k , for any k ≥ 2, under the

generality assumption, find the best fitting hyperplane under the
condition that they contain a selected point in R

k . We also
provide an answer to the questions of the best fitting line and more
general the best fitting affine subspace of dimension ℓ,
1 ≤ ℓ ≤ k − 1 under the condition that they contain a given point.



Our third goal

A careful look at Galton’s figure discloses an intriguing geometric
fact that the line of linear regression of y on x intersects the ellipse
at the points of vertical tangency, while the line of linear regression
of x on y intersects the ellipse at the points of horizontal tangency.
Further analysis of this phenomenon leads us to our third goal.

The third goal:

To study linear regression in R
k in an invariant, coordinate free

form: for a given direction and a given system of N points under
the generality assumption, what is the best fitting hyperplane in the
given direction, among those that contain a selected point in R

k?

Apparently, the second and the third goal are addressed using the
same confocal pencil of quadrics constructed in relation with the
first goal and mentioned above.



Hyper-planar moments of inertia

Given a system of points M1, ...,MN with masses m1, ...,mN in R
k .

The hyperplanar moment of inertia for the system of points for a
hyperplane π is:

Jπ =

N∑

i=1

mid
2
i . (1)

The hyperplanar operator of inertia at a point O is:

〈JOn1,n2〉 =
N∑

j=1

mj〈rj,n1〉〈rj,n2〉, (2)

where rj is the radius vector of the point Mj ; Jπ = 〈JOn,n〉, n is
the unit vector orthogonal to π ∋ O. The hyper-planar ellipsoid of
inertia at the point O is the ellipsoid

〈JOu, u〉 = 1, u ∈ R
k .



Points with a circle as the ellipse of inertia, k = 2

Huygens-Steiner Theorem

If π1, π2 are two parallel hyperplanes (lines for k = 2) at the
distance d and C ∈ π1, then Jπ2 = Jπ1 +md2.

We observed that for any given system of points, there exists a
pair of points F1,F2 symmetric w.r.t. C , for which the ellipse of
inertia is a circle.



Points with a circle as the ellipse of inertia, k = 2

Huygens-Steiner Theorem

If π1, π2 are two parallel hyperplanes (lines for k = 2) at the
distance d and C ∈ π1, then

Jπ2 = Jπ1 +md2.

We observed that for any given system of points, there exists a
pair of points F1,F2 symmetric w.r.t. C , for which the ellipse of
inertia is a circle.
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The envelopes of hyperplanes with a given moment, k = 2

Theorem:Jπ1 = Jπ2 = Jπ3 ; Lemma:d1 · d2 = const.
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Closing the loop: application to points with rotational

ellipsoids of inertia

Proposition [V. D., B. Gajić (2022)]

There are no points with a circle (a rotational ellipsoid) of inertia
outside the principal axes.



From a data set to its confocal pencil of quadrics

Data Set in R
k

Central Ellipsoid of Inertia Confocal Quadrics

Attached points with
rotational Ellipsoids of Inertia

Assigned ,,Focal Points“

Figure: The construction of the confocal pencil of quadrics starting from
a given system of material points in R

k .



The envelopes of hyperplanes with a given moment

Suppose the central principal moments of inertia of a given data
set satisfy 0 < J1 < J2 < ... < Jk . Let us define a22, a

2
3, ..., a

2
k by

J1 +ma22 = J2, J1 +ma23 = J3, ..., J1 +ma2k = Jk .

Theorem [V. D., B. Gajić (2022)]

Given a system of points in R
k of mass m with the central ellipsoid

of inertia J1x
2
1 + · · ·+ Jkx

2
k = 1 at the centroid C . The family of

hyperplanes for which the system of points has the same
hyperplanar moment of inertia are tangent to the same quadric
from the pencil of confocal quadrics

x21
J1
m

− λ
+

x22
J1
m

− a22 − λ
+ ...+

x2k
J1
m

− a2k − λ
= 1.



Applications to the regularization methods

To study nonlinear constraints on the hyperplanes of regression.
May arise in regularization problems for the orthogonal least square
method. A ridge-type method imposes an L2 bound on the
coefficients β1, . . . , βk of the hyperplanes: ||β||2 ≤ s. A lasso-type
method assumes use of the L1 norm and the condition on the
coefficients: ||β||1 ≤ t. The best-fit hyperplane under each of these
conditions is determined as the point of tangency of a quadric
from the linear pencil from Theorem and the L2 circle of radius s
in the first case and the L1 circle (akka the diamond) of radius t in
the second case.



Applications to restricted PCA

Theorem [V. D., B. Gajić (2022)]

Let the points M1, ...,MN with masses m1, ...,mN be given in R
k

with the associated pencil of confocal quadrics. For any point
P(x01, ..., x0k ), the k tangent hyperplanes to k mutually
orthogonal confocal quadrics from the confocal pencil that contain
the point P are the principal hyperplanes of inertia at the point P .
The obtained principal coordinate axes are the principal
components solving Restricted PCA, restricted at the point P , i.e.
providing the maximum variance among the normalized
combinations nTXP , uncorrelated with previous ones.

XP is the k × N data matrix at the point P , i.e. JP = XPX
T
P . The

eignevalues of JP vs. the Jacobi coordinates of P :

µ = 2J1 −mλ. (3)

⇒ J1 = 2J1 −mλkC .



Applications to restricted regression

Theorem (generalization of the Pearson Theorem) [V. D., B.
Gajić (2022)]

Let the points M1, ...,MN with masses m1, ...,mN be given in R
k

with the associated pencil of confocal quadrics. For any point P
denote its Jacobi coordinates by (λ1P < · · · < λkP ).

1 The hyperplane of the best fit to the given system of points
among the hyperplanes that contain P is the tangent
hyperplane to the quadric from confocal pencil with the
parameter λkP . Similarly, the hyperplane of the worst fit to the
given system of points among the hyperplanes that contain P
is the tangent hyperplane to the quadric with parameter λ1P .

2 ℓ : 1 ≤ ℓ ≤ k − 1. The ℓ-moments of πℓ and π̂ℓ:

Jπℓ
= 2(k − ℓ)J1 −m

k∑

j=ℓ+1

λj , Jπ̂ℓ
= 2(k − ℓ)J1 −m

k−ℓ∑

j=1

λj .



Applications to restricted regression

We now illustrate low-dimensional specializations of the last
Theorem.

Figure: For k = 2: The ellipse and hyperbola from the confocal pencil
passing though P . The tangent t1 to the ellipse at P is the worst fit
among all the lines containing P , while t2, the tangent to the hyperbola
at P is the best fit among all such lines. The tangents t1, t2 solve RPCA
restricted at the point P .



Applications to restricted regression and test statistics

Theorem [V. D., B. Gajić (2022)]

Let the system of N points M1, ...,MN with unit masses be given
in R

k , N ≥ k , with the centroid C and the associated pencil of
confocal quadrics. For any point P denote its Jacobi coordinates
by (λ1P < · · · < λkP ) and of C by (λ1C < · · · < λkC ). Then:

(a) The hyperplanar moment of the best fit is J1 = NλkC .

(b) The hyperplanar moment of the hyperplane of the best fit
that contains the point P is equal to J1P = N(2λkC − λkP ).

(c) The test statistic of the hypothesis that the hyperplane of the
best fit contains the point P is:

N

N − k + 1
(2λkC − λkP ). (4)

whose null distribution can be approximated by Snedecor’s F
distribution with degrees of freedom (N − k + 1) and ∞.



Example: Two types of cells in a fraction of the spleens of

fetal mice, the data
Fuller, W. A., Measurement Error Models, John Willey and Sons, 1987.

Based on sampling, it is assumed the original counts to be Poisson
random variables. The square roots of the counts are given in the
last two columns of the table and they have, approximately,
constant error variances equal to T−1 = 1/4, thus η = 1.

Table: Numbers of two types of cells; following Cohen and D’Eustachio
(1978)

j mj nj Yj Xj

1 52 337 7.211 18.358
2 6 141 2.449 11.874
3 14 177 3.742 13.304
4 5 116 2.236 10.770
5 5 88 2.236 9.381



Example: the model

The model

The postulated model is yt = β0 + β1xt ,
(Yt ,Xt) = (yt , xt) + (et , ut). Yt is the square root of the number
of cells forming rosettes for the t-th individual, and Xt is the
square root of the number of nucleated cells for the t-th individual.
Based on the sampling, the pair of errors (et , ut) has a covariance
matrix, approximately, Σ = T−1E = diag(0.25, 0.25), with T = 4.

First calculations

The centroid C is (x̄ , ȳ) = (12.7374, 3.5748). The components of
the hyperplanar inertia operator JC at C :
JXX = 47.7937, JYY = 18.1021, JXY = 28.6318. The principal
hyperplanar moments of inertia J1 = 0.69605, J2 = 65.19978, the
eigenvalues of the operator JC . The corresponding eigenvectors
n1 = (−0.51947, 0.85449)T , n2 = (−0.85449,−0.51947)T are
directions of the principal axes.



Example: the model

The best and worst fit

The line that best fits uC contains the centroid C and is given by
uC : y = 0.60793x − 4.16865. Coincides with Fuller. The equation
of the line of the worst fit is y = −1.64493x + 24.52689.

Testing hypothesis β0 = 0

The origin, denoted by (X ,Y ), is a point P . (X̃ , Ỹ ) are the
principal coordinates having the centroid C as the origin. The
coordinates of P in the principal coordinates:
(X̃P , ỸP) = (3.56202, 12.74098). The pencil of conics associated
with this data: α = 0.13921, β = −12.76154:

x̃2

0.13921 − λ
+

ỹ2

−12.76154 − λ
= 1. (5)

The Jacobi elliptic coordinates of the centroid C are:
λ1C = β = −12.76154, λ2C = α = 0.13921.



Example: the model

The Jacobi coordinates

From J1 = 2J1 −mλ2C , we get J1 = mλ2C = mα. The moment of
the line uC is equal to mλ2C = J1 = 0.69605.
The Jacobi elliptic coordinates of P : λ1P = −186.907 and
λ2P = −0.73589.

The line of the best fit at P

The principal moments of inertia at P :
J1P = 2J1 −mλ2P = 5.071564, J2P = 2J1 −mλ1P = 935.9271.
The line uP the best fit that contains P (in the original
coordinates) uP : y = 0.30014x . Thus, β̂1 = 0.30014. The moment
of uP is m(2λ2C − λ2P ) = J1P = 5.071564, with m = 5.



Example: the figure
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Example: Testing hypothesis β0 = 0

The test statistic

For the null hypothesis β0 = 0, the test statistic: N
N−1 λ̂, null

distribution can be approximated by Snedecor’s F distribution with
degrees of freedom (N − 1) and ∞. λ̂ is the smallest root of the
equation det(JP − λΣ) = 0.

The test statistic in the Jacobi coordinates

This statistic can be expressed as 5
4 λ̂ = J1P = 5(2λ2C − λ2P ). The

value of J1P is 5.071564. The approximate p-value is
P(F4,∞ > 5.07) = 0.00043, which leads to rejection of the null
hypothesis.



Thank you!
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