SILICOFCM Decision Support System for prediction of Heart Failure disease

<u>Nenad Filipovic</u> <u>University of Kragujevac, Serbia</u>

3rd CONFERENCE ON NONLINEARITY 4-8.09.2023, Belgrade, Serbia

SILICOFCM Scope and Concept

SILICOFCM aims to develop a computational platform for *in silico* clinical trials of Familial cardiomyopathies (FCMs) that would take into consideration comprehensive list of patient specific features (genetic, biological, pharmacologic, clinical, imaging and patient specific cellular aspects) capable of **optimizing and testing medical treatment strategy** with the purpose of maximizing positive therapeutic outcome.

SILICOFCM

The SILICOFCM platform is based on the integrated multidisciplinary and multiscale methods for analysis of patient-specific data and development of patient-specific models for monitoring and assessment of patient condition from current through the progression of disease.

SILICFCM Multiscale Integration of Experiments at Molecular, Cellular and Organ Level

Set up R&D computation pipelines for drug testing

Scenario #5 Data Analytics Tool (Risk Stratification System)

Three case scenarios are being explored using MUSICO tool: Myosin mutations, Mutations of Cardiac troponin C, Effects of drugs on heart function.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777204

Expert decision making

DSS: 3D imaging-based

modeling of cardiomyopath

(WP5)

DSS: data mining based

modeling of cardiomyopathy

(WP6)

Target \ prediction	Model MD	Expert E	Consortium C	Joint J
NYHA	0.30 ± 0.48	0.84 ± 0.69	0.56 ± 0.34	0.43 ± 0.29
LA	1.70 ± 0.82	1.69 ± 0.97	1.66 ± 0.70	1.68 ± 0.50
LA_vol	1.00 ± 0.82	1.25 ± 0.98	1.13 ± 0.63	0.84 ± 0.51
LVIDd	0.80 ± 0.63	1.09 ± 0.91	1.00 ± 0.77	0.74 ± 0.49
LVIDs	0.50 ± 0.71	1.02 ± 0.86	0.88 ± 0.68	0.69 ± 0.29
LVEF	0.90 ± 0.88	1.32 ± 0.90	1.28 ± 0.79	1.09 ± 0.65

Linking MP Micromodel and FE Biomechanical Simulation TWO-scale Muscle MODEL

* * * * * * * * *

MEXIE Simulations

Effect of Mutations in Troponin C (TnC) and Myosin Isoforms from Mouse to Human

Myosin Isoforms across the Species

120 L48Q (HCM) 150 1.5 60 1.2 0.1 0.0 0.0 0.4 50 161Q (DCM) Force (pN/MyoF) 50 Tension (kPa) (kPa) 0.5 Calcium (μM) 40 100 40 30 0.4 0.6 0.8 1.0 1.2 1.4 Tension Time (s) 30 20 50 20 10 20 10 0.0 0 0 20 (mn) Chng. HSL (nm) gMouse WT 0 -25 O X 「gMouse L48Q -20 -50 Displ. **FgMouse I61Q** Mouse Rat -40 -75 Human Force & Displ. TgMouse WT -60 Mouse Force & Displ. TgMouse L48Q Rat -80 --- N Force & Dsipl. TaMouse I61Q 0.2 0.0 0.1 0.3 0.4 Huma -100 Time (s) 0.2 0.6 0.8 1.2 1.4 0.0 0.4 1.0 Time (s)

> Prodanovic et al., 2022, Int. J. Mol. Sci, 23, 1135

%α

100

75

5

Mouse

Human

Rat

%β

0

25

95

TnC Mutations in Mouse

* * * * * * * * *

8

Left Ventricular Pressure-Volume

Left Ventricular Calcium, Pressure and Volume Traces During Two Heartbeats

SILIOFCM Human Left Ventricular Pressure-Volume

The Effect of Disopyramide on HCM Muscle and Left Ventricle

Modulation of [Ca²⁺] transients

Human Cardiac Muscle Fiber

* * * * * * * * *

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777204

Human Left Ventricle

The Effect of Digoxin on DCM Muscle and Left Ventricle

Modulation of [Ca²⁺] transients

Human Cardiac Muscle Fiber

Human Left Ventricle

Mexie Simulations

The Effect of Disopyramide and Digoxin on HCM and DCM Left Ventricle Function

* * * * * * * * *

- 3 characteristic pathways of drug flow:
- (i) for drugs acting at the level of contractile proteins;
- (ii) at the level of regulation of transient intracellular calcium concentration;

(iii) at the level tissue remodeling and/or by modulation of blood vessel elasticity, i.e. resistance to blood flow and cardiac output.

SILICOFCM Workflow for drug testing

- 1. Modulation of [Ca²⁺] transients
 - HCM Disopyramide, which lowers peak and baseline levels of [Ca²⁺] transient during twitch contractions
 - DCM Digoxin, which increases peak of [Ca²⁺] transient during twitch contractions, but does not change time to peak and relaxation time
- 2. Changes in kinetic parameters
 - HCM Mavacamten, which is associated with regulation of kinetics rates of transition between disordered myosin detached states and ordered parked state
 - > DCM dATP, which modulates crossbridge cycle rates
- 3. Changes in macroscopic parameters
 - HCM Entresto, which acts on remodeling of heart ventricle walls and modulates the elasticity of blood vessels, typically reducing resistance to blood flow and improving cardiac output in HCM

Modulation of [Ca²⁺] transients - Disopyramide

For treating Hypertrophic Cardiomyopathy (HCM)

Disopyramide lowers peak and baseline levels of [Ca²⁺] transient during twitch contractions!

All MUSICO parameters are the same!

The only change is in

the peak of [Ca²⁺] transient in the presence of 5 µM of disopyramide

Modulation of [Ca²⁺] transients - Digoxin

For treating Dilated Cardiomyopathy (DCM)

Digoxin increases peak of [Ca²⁺] transient during twitch contractions but does not change time to peak and relaxation time!

All MUSICO parameters are the same, and the only change is in the peak of [Ca²⁺] transients

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777204

May 13, 2022

Final review meeting

Changes in kinetic parameters - Mavacamten

For treating Hypertrophic Cardiomyopathy (HCM)

Mavacamten is associated with regulation of kinetics rates of transition between disordered myosin detached states and ordered parked state!

The 1 μ m Mavacampten decreases tension at full Ca²⁺ activation by 30% C and twitch peak for ~ 50 %.

This was achieved by 3.5-fold increase in the transition rate from M.D.Pi to "Parked state"

Changes in kinetic parameters - dATP

For treating Dilated Cardiomyopathy (DCM)

dATP modulates crossbridge cycle rates!

The observed increase it twitch tension peak is achieved by ~3-fold increase in binding rate but keeping binding equilibrium rate constant, and 2-fold increase in ADP release rate.

Effects of calcium change

Linking MUSICO and FE simulation ALYA

The coupling of Alya and MP-surrogate was extended to a human heart biventricular anatomy

Integration of MP-surrogate into Alya finite element solver

المحال المالي

WP5 Alya - MP surrogate Coupling

Data input to both Calcium Transients and MPsurrogate parameters are read and integrated within the ALYA FEM solver

With this setup, any normal, diseased or drugtreatment condition can be simulated in any given anatomy or geometry

slab.dat slab.dom.dat slab.ker.dat slab.exm.dat slab.sld.dat	slab.post.alyadat MP-params.dat MP-Ca.dat msh				
PHYSICAL_PROBLEM					
ECCOUPLING					
MATERIAL: 1					
MODEL: MUSICO)				
MUSICO_OPTIONS					
CALCIUM_FILE: MP-Ca.dat					
PARAMETERS_FILE: MP-params.dat					
END_MUSICO_OPTIONS					
END_ECCOUPLING					
END_PHYSICAL_PROB	BLEM				

38 I Number parameters 1.0e-6 _! TimeStep 5000 <u>lterMax</u> 1.6 <u></u>SL 0 2.2 <u>ISL</u> isom 1.1 <u>|</u>LA 1.6 ! LM 0.176 1.62e5 0.007 0.915 !Ca 50 (uM) 0.0 553.701 IK on Ca 100.0 <u>IK off Ca</u> 150.0 64.1084910194011

a) Alya's configuration files and ket.dat.

b) MP input parameters (params.dat).

Interface defining the Alya-MP surrogate model

Normal Human Heart

SILICOFCM

SILIOFCM Hypertrophic Cardiomyopathy

HCM + Mavacamten

SILICOFCM

Pressure-Volume Loop Comparison between models

- Full heartbeat simulations require simulation of more than one beat to reach a steady state
- Baseline calcium transient magnitude prestresses the anatomy
- There is a need to pre-stress the anatomy so as to preserve initial diastolic volume
- Mavacamten slightly reduced arterial pressure

Percentage change from Normal	LV EF(%)	RV EF(%)	
НСМ	-25%	-15%	
HCM + Mavacamten	- 29 %	-26 %	

Dilated Cardiomyopathy

SILICOFCM

Pressure-Volume loops

SILICOFCM PAK FE solver tool with linked MP surrogate model

- MP surrogate was built into our finite element solver PAK as a new muscle material model. MP surrogate consists of parameters, states, and calculator.
- Based on input parameters, the current state of the material model and provided stretch, MP surrogate calculates stress and instantaneous stiffness along muscle fiber and it produces a new state of the MP

D5.4 Software: Linking MUSICO and FE simulation

PAK FE solver tool with linked MP surrogate model

Algorithm: Finite element analysis and MP surrogate model

- Finite element solver maintains and updates states of the MP model. We accept the new state of the model if the finite elements achieved convergence. We neglect the new state and use the state from the previous time step if convergence is not achieved.
- In our code, we incorporated openMP, which is typically used for loop-level parallelism, to speed up the calculations of integrated PAK-MP simulations.
- OpenMP introduces parallelism into the application by launching a set of threads that execute portions of code concurrently. Since MP calculations are computationally intensive we created one thread per integration point, so that the calculations done at each integration point are done in parallel.

0.04

PAK linked with MP - Use cases

Prescribed calcium concentration for a healthy heart

Active stress generated within muscle fiber during contraction

Table MP model parameters for a healthy heart

Parameter	Value	Parameter	Value	Parameter	Value
TimeStep	1.00E-05	k_off_Ca	50	ErrFlag	0
IterMax	100	f_0_p	1000	Stiff_Eq_P1	197.5442
SL_O	1.6	h_0	5000	Stiff_Eq_P2	3434.963
SL_isom	1.9	h_0_p	550	Stiff_Eq_P3	0
LA	1.1	g_0	450	Ca_amp	3.380394
LM	1.6	u	1.1	tau1	0.065917
В	0.176	w	1	tau2	0.014666
R_T_0	1.62E+05	V	1	k_PS_0	50
x0	0.007	beta	0	k_PS_max	700
Ca_50	0.915	eta	0.396	b_param	5
k_on_0	0	sigma_p	7.2	Ca_50_PS	1
k_on_Ca	120	sigma_n	1	k_lambda_on_0	3750
k_off_0	100	ErrorEps	1.0E-7	k_lambda_off_0	375

Displacement at the free node of the 3D model during muscle contraction

PAK linked with MP - Use cases

LV parametric model

Velocities at start of diastole, end of diastole and middle of systole

Solid displacements at start of diastole, end of diastole, and middle of systole

120 110 100 90 80 Presure [mmHg]

Pressures at start of diastole, end of diastole and middle of systole

SILICOFCM Numerical results from SILICOFCM platform for patients before and after Entresto treatment

PV diagram, pressure diastolic distribution, pressure systolic distribution for case before Entresto treatment

PV diagram, velocity distribution in the diastolic phase, velocity distribution in the systolic phase for case after Entresto treatment

SILICOFCM Numerical results from SILICOFCM platform for patients after DIGOXIN treatment

PV diagram, velocity distribution in the diastolic phase, velocity distribution in the systolic phase for case after Digoxin treatment

It was found that mean left ventricular ejection fraction increased from 74 ± 2 to 79 ± 1 percentage for 10 patients. In the simulation results ejection fraction was increased from 75 to 80 percentages which is correlated with the observed clinical measurements. Also, we found that velocity field gives increased values after digoxin treatment which may results as consequence of increased ejection fraction.

Upgrade FE biomechanical simulation (PAK Solver)

Solid and fluid left ventricle model generated from echocardiography

Upgrade FE biomechanical simulation (PAK Solver)

Solid and fluid left ventricle model generated from echocardiography

Fluid boundary conditions

0.22

[cm/s]

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777204

9.74e+00

9.13e+00

Animations of total heart deformation

Conclusions

- The full human heart simulations using the Multiscale model and Decision Support System can provide physiologically relevant assessment of the familial cardiomyopathies simulated and the effect of drugs.
- These results can provide insights into clinically relevant observations of the disease and provide better insights on detailed drug effects.
- Future research challenges :
 - A pre-stress algorithm will be added to the simulations in order to achieve higher ejection fractions
 - The application of these methodologies to patient-specific anatomies for high throughput assessment for clinical purposes

