
Integrable Models of the Chaplygin ball
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Chaplygin ball
One of the most famous solvable problems in nonholonomic
mechanics describes rolling without slipping of a balanced,
dynamically nonsymmetric ball over a horizontal plane.
Let OB, a, m, I = diag(A,B,C ), be the center, radius, mass and
the inertia operator of a ball B. The equations of motion in the
frame attached to the ball can be written in the form

˙⃗k = k⃗ × Ω⃗,
˙⃗
Γ = Γ⃗× Ω⃗,

where Ω is the angular velocity of the ball,
k⃗ = IΩ⃗ +DΩ⃗−D⟨Ω⃗, Γ⃗⟩Γ⃗ is the angular momentum of the ball with
respect to the point of contact, and D = ma2.
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Rolling of the ball B with center OB over the sphere S with
center O: three scenarios

(i) rolling of B over the outer surface of S and S is outside B (see
the leftmost part of Fig);

(ii) rolling of B over the inner surface of S (b > a)(see the central
part of Fig);

(iii) rolling of B over the outer surface of S and S is within B; in
this case b < a and the rolling ball B is a spherical shell (see
the rightmost part of Fig).



Let ε = b/(b ± a), where we take "+"for the case (i) and "−"in
the cases (ii) and (iii). The equations of motion:

˙⃗k = k⃗ × Ω⃗, ˙⃗γ = εΓ⃗× Ω⃗.

When b tends to infinity, then ε tends to 1 and Γ⃗ tends to the unit
vector that is constant in the fixed reference frame. This way, for
ε = 1, we obtain the equations of motion of the Chaplygin ball
rolling over the plane orthogonal to Γ⃗.
Remarkably, for ε = −1, which is the case (iii) above with a = 2b,
the problem is integrable.
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Spherical ball bearing in four configuration. Cases I and II
We consider n homogeneous balls B1, . . . ,Bn with centers
O1, ...,On and the same radius r roll without slipping around a
fixed sphere S0 with center O and radius R . A dynamically
nonsymmetric sphere S of radius ρ = R ± 2r with the center that
coincides with the center O of the fixed sphere S0 rolls without
slipping over the moving balls B1, . . . ,Bn.



Spherical ball bearing, case III and case IV (ρ = 2r − R)

V. Dragović, B. Gajić, B.J, Spherical and Planar Ball Bearings —
Nonholonomic Systems with Invariant Measures, RCD, 27 (2022)
424—442.

V. Dragović, B. Gajić, B.J, Spherical and Planar Ball Bearings — a
Study of Integrable Cases, RCD, 28 (2023) 62–77.

The rolling of a homogeneous ball over a dynamically asymmetric
sphere S is introduced by Borisov, Kilin, and Mamaev (RCD, 2011)



Let I be the inertia operator of the outer sphere S. We choose the
moving frame O e⃗1, e⃗2, e⃗3, such that O e⃗1, O e⃗2, O e⃗3 are the
principal axes of inertia: I = diag(A,B,C ). Let diag(Ii , Ii , Ii ) and
mi be the inertia operator and the mass of the i-th ball Bi .
Then the configuration space and the kinetic energy of the problem
are given by:

Q =SO(3)n+1 × (S2)n{g, g1, . . . , gn, γ⃗1, . . . , γ⃗n},

T =
1
2
⟨I Ω⃗, Ω⃗⟩+ 1

2

n∑
i=1

Ii ⟨ω⃗i , ω⃗i ⟩+
1
2

n∑
i=1

mi ⟨v⃗Oi
, v⃗Oi

⟩.

Here γ⃗i is the unit vector γ⃗i =
−−→
OOi

|
−−→
OOi |

determining the position Oi of

the centre of i-th ball Bi and v⃗Oi
is its velocity, i = 1, . . . , n. In

cases I and II, v⃗Oi
= (R ± r) ˙⃗γi while in cases III and IV

v⃗O1 = ±(r − R) ˙⃗γ1.



Let us denote the contact points of the balls B1, . . . ,Bn with the
spheres S0 and S by A1, ...,An and B1,B2, ...,Bn, respectively. The
condition that the rolling of the balls B1, . . . ,Bn and the sphere S
are without slipping leads to the nonholonomic constraints: In cases
I and II

v⃗Oi
= ±r ω⃗i × γ⃗i , v⃗Oi

= (R ± 2r)ω⃗ × γ⃗i ± r ω⃗i × γ⃗i .

and in cases III and IV

v⃗O1 = ±r ω⃗1 × γ⃗1, v⃗O1 = ±(2r − R)ω⃗ × γ⃗1 ± r γ⃗1 × ω⃗1.

The dimension of the configuration space Q is 5n+ 3. There are 4n
independent constraints, defining a nonintegrable distribution
D ⊂ TQ. Therefore, the dimension of the vector subspaces of
admissible velocities Dq ⊂ TqQ is n + 3, q ∈ Q. The phase space
of the system has the dimension 6n + 6, which is the dimension of
the bundle D as a submanifold of TQ.



The kinetic energy and the constraints are invariant with respect to
the SO(3)n+1–action defined by

(g, g1, . . . , gn, γ⃗1, . . . , γ⃗n) 7−→ (ag, ag1a−1
1 , . . . , agna−1

n , aγ⃗1, . . . , aγ⃗n),

a, a1, . . . , an ∈ SO(3). For the coordinates in the space
(TQ)/SO(3)n+1 we can take the angular velocities and the unit
position vectors in the reference frame attached to the sphere S:

(TQ)/SO(3)n+1 ∼= R3(n+1)×(TS2)n{Ω⃗, Ω⃗1, . . . , Ω⃗n,
˙⃗
Γ1, . . . ,

˙⃗
Γn, Γ⃗1, . . . , Γ⃗n}.

In the moving reference frame O e⃗1, e⃗2, e⃗3, the constraints become:

V⃗Oi
= ±rΩ⃗i × Γ⃗i , Ω⃗i × Γ⃗i = δΩ⃗× Γ⃗i , i = 1, . . . , n,

where

ε =
R

2R ± 2r
and δ = ±R ± 2r

2r
(cases I and II),

ε =
R

2R − 2r
and δ =

2r − R

2r
(cases III and IV).



Since both the kinetic energy and the constraints are invariant with
respect to the SO(3)n+1–action, the equations of motion are also
SO(3)n+1–invariant. Thus, they induce a well defined system on
the reduced phase space

M = D/SO(3)n+1 ⊂ (TQ)/SO(3)n+1

of dimension 3n + 3.

Lemma
The kinematic part of the equations of motion of the spherical ball
bearing system is:

˙⃗
Γi = ϵΓ⃗i × Ω⃗, i = 1, . . . , n.

Let F⃗Bi
and F⃗Ai

be the reaction forces that act on the ball Bi at
the points Bi and Ai , respectively. The reaction force at the point
Bi on the sphere S is then −F⃗Bi

.



Lemma
The dynamical part of the equations of motion of the spherical ball
bearing system is:

Ii
˙⃗
Ωi = Ii Ω⃗i × Ω⃗± r Γ⃗i × (F⃗Bi

− F⃗Ai
),

mi
˙⃗
VOi

= mi V⃗Oi
× Ω⃗ + F⃗Bi

+ F⃗Ai
, i = 1, ..., n

I
˙⃗
Ω = I Ω⃗× Ω⃗∓ 2rδ

n∑
i=1

Γ⃗i × F⃗Bi
.

Proposition
We have following first integrals

⟨Ω⃗i , Γ⃗i ⟩ = ci = const, i = 1, ..., n

⟨Γ⃗i , Γ⃗j⟩ = γij = const, 1 ⩽ i < j ⩽ n.

So, the centers Oi of the homogeneous balls Bi are in rest in
relation to each other.



The reduced system

The reduced phase space M = D/SO(3)n+1 is foliated on
2n + 3–dimensional invariant varieties

Mc : ⟨Ω⃗i , Γ⃗i ⟩ = ci = const, i = 1, ..., n.

On the invariant variety Mc , the vector-functions Ω⃗i can be
uniquely expressed as functions of Ω⃗, Γ⃗i :

Ω⃗i = ci Γ⃗i + δΩ⃗− δ⟨Γ⃗i , Ω⃗⟩Γ⃗i .

Whence, Ω⃗ determines all velocities of the system on Mc and Mc

is diffeomorphic to the second reduced phase space

N = R3 ×
(
S2)n{Ω⃗, Γ⃗1, . . . , Γ⃗n}.



As a result we obtain the following diagram

Dc

/SO(3)n+1

��

� � // D

/SO(3)n+1

��

� � // TQ = (TSO(3))n+1 × (TS2)n

/SO(3)n+1

��

Mc

πc

∼=
++

� � // M � � // (TQ)/SO(3)n+1 ∼= R3(n+1) × (TS2)n

π

��

N = R3 ×
(
S2)n

We set

M⃗ = IΩ⃗ = I Ω⃗ + δ2
n∑

i=1

(Ii +mi r
2)Ω⃗− δ2

n∑
i=1

(Ii +mi r
2)⟨Γ⃗i , Ω⃗⟩Γ⃗i ,

N⃗ = δ

n∑
i=1

Iici Γ⃗i .

We refer to I as the modified inertia operator.



Theorem
The reduction of the spherical ball bearing problem to Mc

∼= N is
described by the equations

d

dt
M⃗ = M⃗ × Ω⃗ + (1 − ε)N⃗ × Ω⃗,

d

dt
Γ⃗i = εΓ⃗i × Ω⃗, i = 1, . . . , n.

The kinetic energy of the system takes the form

T =
1
2
⟨M⃗, Ω⃗⟩+ 1

2

n∑
i=1

Iic
2
i .

Also, since
d

dt
N⃗ = εN⃗ × Ω⃗,

the first equation is equivalent to

d

dt
(M⃗ + N⃗) = (M⃗ + N⃗)× Ω⃗.



Theorem
For arbitrary values of parameters ci , the reduced system has the
invariant measure

µ(Γ⃗1, . . . , Γ⃗n)dΩ ∧ σ1 ∧ · · · ∧ σn, µ =
√

det(I),

where dΩ and σi are the standard measures on R3{Ω⃗} and S2{Γ⃗i},
i = 1, . . . , n.

Proposition
The system always has the following first integrals

F1 =
1
2
⟨M⃗, Ω⃗⟩, F2 = ⟨M⃗+N⃗, M⃗+N⃗⟩, Fij = ⟨Γ⃗i , Γ⃗j⟩, 1 ≤ i < j ≤ n.

Thus, in the special case n = 1, we have the 5-dimensional phase
space N = R3 × S2{Ω⃗, Γ⃗1}, and the system has two first integrals
and an invariant measure. For the integrability, one needs to find a
third independent first integral.



Spherical support system and ε–modified L+R systems
If we set ε = 1 in the system, we obtain the equation of the
spherical support system introduced by Fedorov. The system
describes the rolling without slipping of a dynamically
nonsymmetric sphere S over n homogeneous balls B1, . . . ,Bn of
possibly different radii, but with fixed centers. It is an example of a
class of nonhamiltonian L+R systems on Lie groups with an
invariant measure.
On the other hand, if we set N⃗ = 0, we obtain an example
ε–modified L+R system.
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Yu.N. Fedorov, B. J, Integrable nonholonomic geodesic flows on
compact Lie groups, In: Topological methods in the theory of
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eds), Cambrige Scientific Publ., (2006), 115–152.

B. J, Invariant measures of modified LR and L+R systems, Regular
and Chaotic Dynamics, 20 (2015) 542—552.



System with one homogeneous ball
We proceed with the case n = 1. To simplify notation, we denote
Γ⃗1 by Γ⃗ and set

D = δ2(I1 +m1r
2), d = δI1c1, L = ⟨Ω⃗, Γ⃗⟩,

M⃗ = M⃗ + N⃗ = M⃗ + d Γ⃗ = I Ω⃗ + DΩ⃗ + (d − DL)Γ⃗.

The reduced system, the operator I, and its determinant now read

˙⃗M = M⃗ × Ω⃗,
˙⃗
Γ = εΓ⃗× Ω⃗,

I = I+DE−DΓ⃗⊗Γ⃗ =

A+ D − DΓ2
1 −DΓ1Γ2 −DΓ1Γ3

−DΓ1Γ2 B + D − DΓ2
2 −DΓ2Γ3

−DΓ1Γ3 −DΓ2Γ3 C + D − DΓ2
3

 ,

det(I) = (A+ D)(B + D)(C + D)
(
1 − D

( Γ2
1

A+ D
+

Γ2
2

B + D
+

Γ2
3

C + D

))
.



The first integrable case (generic I, ε = −1)

Condition ε = −1 corresponds to configuration III for 2r = 3R . We
get the following statement.

Theorem
The spherical ball bearings problem (17) in the configuration III,
when 2r = 3R , i.e., the radius of the moving sphere S is twice the
radius of the fixed sphere S0, is integrable. The third integral is

F3 = (B+C−A+D)M1Γ1+(A+C−B+D)M2Γ2+(A+B−C+D)M3Γ3.

For d = 0, the integral F3 reduces to the one found by Borisov and
Fedorov for the rolling of a Chaplygin ball over a sphere.



The second integrable case (B = C , generic ε)

Theorem
The spherical ball bearings problem (17) for B = C is integrable for
all ε. Along with F1 and F2, the system has two additional,
nonalgebraic first integrals F3 and F4:

F3,4 =
(
±
√
D(A− C )F +DG − dC

)
exp(±(1− ε)

√
D(A− C )Φ).

Note that the product of the two nonalgebraic first integrals

F3F4 =(DG − dC )2 − D(A− C )F 2

=D2G 2 − 2dCDG + d2C 2 − D(A− C )(
C (A+ D)Ω2

1 + D(A− C )Ω2
1Γ

2
1
)

is an affine combination of F1 and F2:

F3F4 = CD(C + D)⟨M⃗, Ω⃗⟩ − CD⟨M⃗, M⃗⟩ − C (C + D)d2.
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