Integrable Models of the Chaplygin ball

Vladimir Dragović, Borislav Gajić, Božidar Jovanović Mathematical Institute SANU, Belgrade

> 3rd Conference on Nonlinearity MISANU, Belgrade

September 4, 2023 - September 8, 2023

Chaplygin ball

One of the most famous solvable problems in nonholonomic mechanics describes rolling without slipping of a balanced, dynamically nonsymmetric ball over a horizontal plane.

Let O_B , a, m, $\mathbb{I} = \text{diag}(A, B, C)$, be the center, radius, mass and the inertia operator of a ball B. The equations of motion in the frame attached to the ball can be written in the form

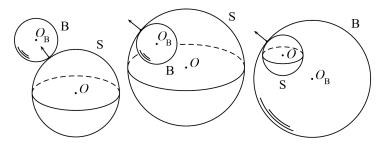
$$\dot{\vec{k}} = \vec{k} \times \vec{\Omega}, \qquad \dot{\vec{\Gamma}} = \vec{\Gamma} \times \vec{\Omega},$$

where Ω is the angular velocity of the ball,

 $\vec{k} = \mathbb{I}\vec{\Omega} + D\vec{\Omega} - D\langle\vec{\Omega},\vec{\Gamma}\rangle\vec{\Gamma}$ is the angular momentum of the ball with respect to the point of contact, and $D = ma^2$.

- S. A. Chaplygin, *On a rolling sphere on a horizontal plane*, Mat. Sb. **24** (1903), 139–168.
- A.V. Borisov, I.S. Mamaev, *Chaplygin's ball rolling problem is Hamiltonian*, Math. Notes **70**(5–6) (2001), 720–723.
- B. J., Hamiltonization and integrability of the Chaplygin sphere in ℝⁿ, J. Nonlinear. Sci. **20** (2010), 569–593.

Rolling of the ball B with center O_B over the sphere S with center O: three scenarios



- (i) rolling of B over the outer surface of S and S is outside B (see the leftmost part of Fig);
- (ii) rolling of B over the inner surface of S (b > a)(see the central part of Fig);
- (iii) rolling of B over the outer surface of S and S is within B; in this case b < a and the rolling ball B is a spherical shell (see the rightmost part of Fig).

Let $\varepsilon = b/(b \pm a)$, where we take "+"for the case (i) and "-"in the cases (ii) and (iii). The equations of motion:

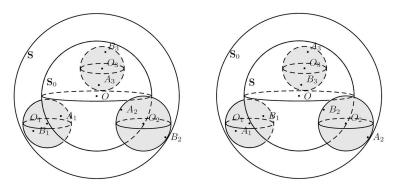
$$\dot{\vec{k}} = \vec{k} \times \vec{\Omega}, \qquad \dot{\vec{\gamma}} = \varepsilon \vec{\Gamma} \times \vec{\Omega}.$$

When b tends to infinity, then ε tends to 1 and $\vec{\Gamma}$ tends to the unit vector that is constant in the fixed reference frame. This way, for $\varepsilon = 1$, we obtain the equations of motion of the Chaplygin ball rolling over the plane orthogonal to $\vec{\Gamma}$. Remarkably, for $\varepsilon = -1$, which is the case (iii) above with a = 2b, the problem is integrable.

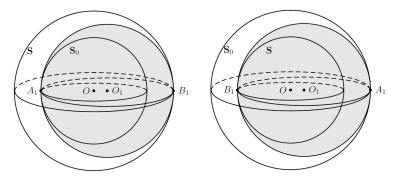
- V. A. Yaroshchuk, New cases of the existence of an integral invariant in a problem on the rolling of a rigid body, Vestn. Mosk. Univ., Ser. I 6 (1992), 26–30.
- A. V. Borisov, Yu. N. Fedorov, *On two modified integrable problems in dynamics*, Mosc. Univ. Mech. Bull. **50**(6) (1995), 16–18.
- B. J., Rolling balls over spheres in ℝⁿ, Nonlinearity **31** (2018), 4006–4031.

Spherical ball bearing in four configuration. Cases I and II

We consider *n* homogeneous balls B_1, \ldots, B_n with centers O_1, \ldots, O_n and the same radius *r* roll without slipping around a fixed sphere S_0 with center *O* and radius *R*. A dynamically nonsymmetric sphere S of radius $\rho = R \pm 2r$ with the center that coincides with the center *O* of the fixed sphere S_0 rolls without slipping over the moving balls B_1, \ldots, B_n .



Spherical ball bearing, case III and case IV ($\rho = 2r - R$)



V. Dragović, B. Gajić, B.J, Spherical and Planar Ball Bearings – Nonholonomic Systems with Invariant Measures, RCD, 27 (2022) 424–442.

 V. Dragović, B. Gajić, B.J, Spherical and Planar Ball Bearings – a Study of Integrable Cases, RCD, 28 (2023) 62–77.
 The rolling of a homogeneous ball over a dynamically asymmetric sphere S is introduced by Borisov, Kilin, and Mamaev (RCD, 2011) Let *I* be the inertia operator of the outer sphere S. We choose the moving frame $O\vec{e}_1, \vec{e}_2, \vec{e}_3$, such that $O\vec{e}_1, O\vec{e}_2, O\vec{e}_3$ are the principal axes of inertia: I = diag(A, B, C). Let $\text{diag}(I_i, I_i, I_i)$ and m_i be the inertia operator and the mass of the *i*-th ball B_i. Then the configuration space and the kinetic energy of the problem are given by:

$$Q = SO(3)^{n+1} \times (S^2)^n \{ g, g_1, \dots, g_n, \vec{\gamma}_1, \dots, \vec{\gamma}_n \},$$

$$T = \frac{1}{2} \langle I \vec{\Omega}, \vec{\Omega} \rangle + \frac{1}{2} \sum_{i=1}^n I_i \langle \vec{\omega}_i, \vec{\omega}_i \rangle + \frac{1}{2} \sum_{i=1}^n m_i \langle \vec{v}_{O_i}, \vec{v}_{O_i} \rangle.$$

Here $\vec{\gamma}_i$ is the unit vector $\vec{\gamma}_i = \frac{\overrightarrow{OO_i}}{|\overrightarrow{OO_i}|}$ determining the position O_i of the centre of *i*-th ball B_i and \vec{v}_{O_i} is its velocity, i = 1, ..., n. In cases I and II, $\vec{v}_{O_i} = (R \pm r)\dot{\vec{\gamma}_i}$ while in cases III and IV $\vec{v}_{O_1} = \pm (r - R)\vec{\gamma}_1$.

Let us denote the contact points of the balls B_1, \ldots, B_n with the spheres S_0 and S by A_1, \ldots, A_n and B_1, B_2, \ldots, B_n , respectively. The condition that the rolling of the balls B_1, \ldots, B_n and the sphere S are without slipping leads to the nonholonomic constraints: In cases I and II

$$\vec{v}_{O_i} = \pm r \vec{\omega}_i \times \vec{\gamma}_i, \qquad \vec{v}_{O_i} = (R \pm 2r) \vec{\omega} \times \vec{\gamma}_i \pm r \vec{\omega}_i \times \vec{\gamma}_i.$$

and in cases III and IV

$$ec{v}_{O_1} = \pm r ec{\omega}_1 imes ec{\gamma}_1, \qquad ec{v}_{O_1} = \pm (2r-R) ec{\omega} imes ec{\gamma}_1 \pm r ec{\gamma}_1 imes ec{\omega}_1.$$

The dimension of the configuration space Q is 5n + 3. There are 4n independent constraints, defining a nonintegrable distribution $\mathcal{D} \subset TQ$. Therefore, the dimension of the vector subspaces of admissible velocities $\mathcal{D}_q \subset T_qQ$ is n + 3, $q \in Q$. The phase space of the system has the dimension 6n + 6, which is the dimension of the bundle \mathcal{D} as a submanifold of TQ.

The kinetic energy and the constraints are invariant with respect to the $SO(3)^{n+1}$ -action defined by

$$(g, g_1, \ldots, g_n, \vec{\gamma}_1, \ldots, \vec{\gamma}_n) \longmapsto (ag, ag_1a_1^{-1}, \ldots, ag_na_n^{-1}, a\vec{\gamma}_1, \ldots, a\vec{\gamma}_n),$$

 $a, a_1, \ldots, a_n \in SO(3)$. For the coordinates in the space $(TQ)/SO(3)^{n+1}$ we can take the angular velocities and the unit position vectors in the reference frame attached to the sphere S:

$$(TQ)/SO(3)^{n+1} \cong \mathbb{R}^{3(n+1)} \times (TS^2)^n \{\vec{\Omega}, \vec{\Omega}_1, \ldots, \vec{\Omega}_n, \vec{\Gamma}_1, \ldots, \vec{\Gamma}_n, \vec{\Gamma}_1, \ldots, \vec{\Gamma}_n\}.$$

In the moving reference frame $O\vec{e}_1, \vec{e}_2, \vec{e}_3$, the constraints become:

$$\vec{V}_{O_i} = \pm r \vec{\Omega}_i imes \vec{\Gamma}_i, \qquad \vec{\Omega}_i imes \vec{\Gamma}_i = \delta \vec{\Omega} imes \vec{\Gamma}_i, \qquad i = 1, \dots, n,$$

where

$$\begin{split} \varepsilon &= \frac{R}{2R \pm 2r} & \text{and} & \delta &= \pm \frac{R \pm 2r}{2r} & \text{(cases I and II)}, \\ \varepsilon &= \frac{R}{2R - 2r} & \text{and} & \delta &= \frac{2r - R}{2r} & \text{(cases III and IV)}. \end{split}$$

Since both the kinetic energy and the constraints are invariant with respect to the $SO(3)^{n+1}$ -action, the equations of motion are also $SO(3)^{n+1}$ -invariant. Thus, they induce a well defined system on the reduced phase space

$$\mathcal{M} = \mathcal{D}/SO(3)^{n+1} \subset (TQ)/SO(3)^{n+1}$$

of dimension 3n + 3.

Lemma

The kinematic part of the equations of motion of the spherical ball bearing system is:

$$\dot{\vec{\Gamma}}_i = \epsilon \vec{\Gamma}_i \times \vec{\Omega}, \qquad i = 1, \dots, n.$$

Let \vec{F}_{B_i} and \vec{F}_{A_i} be the reaction forces that act on the ball B_i at the points B_i and A_i , respectively. The reaction force at the point B_i on the sphere S is then $-\vec{F}_{B_i}$.

Lemma

The dynamical part of the equations of motion of the spherical ball bearing system is:

$$I_{i}\vec{\Omega}_{i} = I_{i}\vec{\Omega}_{i} \times \vec{\Omega} \pm r\vec{\Gamma}_{i} \times (\vec{F}_{B_{i}} - \vec{F}_{A_{i}}),$$

$$m_{i}\dot{\vec{V}}_{O_{i}} = m_{i}\vec{V}_{O_{i}} \times \vec{\Omega} + \vec{F}_{B_{i}} + \vec{F}_{A_{i}}, \qquad i = 1, ..., n$$

$$I\dot{\vec{\Omega}} = I\vec{\Omega} \times \vec{\Omega} \mp 2r\delta \sum_{i=1}^{n} \vec{\Gamma}_{i} \times \vec{F}_{B_{i}}.$$

Proposition

We have following first integrals

$$\begin{split} \langle \vec{\Omega}_i, \vec{\Gamma}_i \rangle &= c_i = const, \qquad i = 1, ..., n \\ \langle \vec{\Gamma}_i, \vec{\Gamma}_j \rangle &= \gamma_{ij} = const, \qquad 1 \leqslant i < j \leqslant n. \end{split}$$

So, the centers O_i of the homogeneous balls B_i are in rest in relation to each other.

The reduced system

The reduced phase space $\mathcal{M} = \mathcal{D}/SO(3)^{n+1}$ is foliated on 2n + 3-dimensional invariant varieties

$$\mathcal{M}_c$$
: $\langle \vec{\Omega}_i, \vec{\Gamma}_i \rangle = c_i = const, \qquad i = 1, ..., n.$

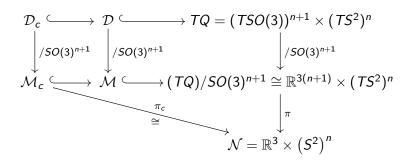
On the invariant variety \mathcal{M}_c , the vector-functions $\vec{\Omega}_i$ can be uniquely expressed as functions of $\vec{\Omega}$, $\vec{\Gamma}_i$:

$$\vec{\Omega}_i = c_i \vec{\Gamma}_i + \delta \vec{\Omega} - \delta \langle \vec{\Gamma}_i, \vec{\Omega} \rangle \vec{\Gamma}_i.$$

Whence, $\vec{\Omega}$ determines all velocities of the system on \mathcal{M}_c and \mathcal{M}_c is diffeomorphic to the *second reduced phase space*

$$\mathcal{N} = \mathbb{R}^3 \times (S^2)^n \{ \vec{\Omega}, \vec{\Gamma}_1, \dots, \vec{\Gamma}_n \}.$$

As a result we obtain the following diagram



We set

$$\vec{\mathcal{M}} = I\vec{\Omega} = I\vec{\Omega} + \delta^2 \sum_{i=1}^n (I_i + m_i r^2)\vec{\Omega} - \delta^2 \sum_{i=1}^n (I_i + m_i r^2) \langle \vec{\Gamma}_i, \vec{\Omega} \rangle \vec{\Gamma}_i,$$

$$\vec{\mathcal{N}} = \delta \sum_{i=1}^n I_i c_i \vec{\Gamma}_i.$$

We refer to I as the modified inertia operator.

Theorem

The reduction of the spherical ball bearing problem to $\mathcal{M}_c\cong\mathcal{N}$ is described by the equations

$$\frac{d}{dt}\vec{M} = \vec{M} \times \vec{\Omega} + (1 - \varepsilon)\vec{N} \times \vec{\Omega},$$
$$\frac{d}{dt}\vec{\Gamma}_i = \varepsilon\vec{\Gamma}_i \times \vec{\Omega}, \qquad i = 1, \dots, n.$$

The kinetic energy of the system takes the form

$$T = rac{1}{2} \langle ec{M}, ec{\Omega}
angle + rac{1}{2} \sum_{i=1}^n I_i c_i^2.$$

Also, since

$$rac{d}{dt}ec{N} = arepsilonec{N} imes ec{\Omega}$$

the first equation is equivalent to

$$rac{d}{dt}(ec{M}+ec{N})=(ec{M}+ec{N}) imesec{\Omega}.$$

Theorem

For arbitrary values of parameters c_i , the reduced system has the invariant measure

$$\mu(\vec{\Gamma}_1, \dots, \vec{\Gamma}_n) d\Omega \wedge \sigma_1 \wedge \dots \wedge \sigma_n, \qquad \mu = \sqrt{\det(\mathsf{I})},$$

where $d\Omega$ and σ_i are the standard measures on $\mathbb{R}^3{\{\vec{\Omega}\}}$ and $S^2{\{\vec{\Gamma}_i\}}$, i = 1, ..., n.

Proposition

The system always has the following first integrals

$$F_1 = \frac{1}{2} \langle \vec{M}, \vec{\Omega} \rangle, \quad F_2 = \langle \vec{M} + \vec{N}, \vec{M} + \vec{N} \rangle, \quad F_{ij} = \langle \vec{\Gamma}_i, \vec{\Gamma}_j \rangle, \quad 1 \le i < j \le n.$$

Thus, in the special case n = 1, we have the 5-dimensional phase space $\mathcal{N} = \mathbb{R}^3 \times S^2{\{\vec{\Omega}, \vec{\Gamma}_1\}}$, and the system has two first integrals and an invariant measure. For the integrability, one needs to find a third independent first integral.

Spherical support system and ε -modified L+R systems

If we set $\varepsilon = 1$ in the system, we obtain the equation of the spherical support system introduced by Fedorov. The system describes the rolling without slipping of a dynamically nonsymmetric sphere S over *n* homogeneous balls B₁,..., B_n of possibly different radii, but with fixed centers. It is an example of a class of nonhamiltonian L+R systems on Lie groups with an invariant measure.

On the other hand, if we set $\vec{N} = 0$, we obtain an example ε -modified L+R system.

- Yu. N. Fedorov, *Motion of a rigid body in a spherical suspension*, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., (1988) no. 5, 91–93.
- Yu. N. Fedorov, B. J, *Integrable nonholonomic geodesic flows on compact Lie groups*, In: Topological methods in the theory of integrable systems (Bolsinov A.V., Fomenko A.T., Oshemkov A.A. eds), Cambrige Scientific Publ., (2006), 115–152.

B. J, *Invariant measures of modified LR and L+R systems*, Regular and Chaotic Dynamics, **20** (2015) 542–552.

System with one homogeneous ball

We proceed with the case n=1. To simplify notation, we denote $\vec{\Gamma}_1$ by $\vec{\Gamma}$ and set

$$D = \delta^2 (I_1 + m_1 r^2), \qquad d = \delta I_1 c_1, \qquad L = \langle \vec{\Omega}, \vec{\Gamma} \rangle,$$

$$\vec{M} = \vec{M} + \vec{N} = \vec{M} + d\vec{\Gamma} = I\vec{\Omega} + D\vec{\Omega} + (d - DL)\vec{\Gamma}.$$

The reduced system, the operator I, and its determinant now read

$$\vec{\mathbf{M}} = \vec{\mathbf{M}} \times \vec{\Omega}, \qquad \vec{\mathbf{\Gamma}} = \varepsilon \vec{\mathbf{\Gamma}} \times \vec{\Omega},$$

$$\mathbf{I} = \mathbb{I} + D\mathbf{E} - D\vec{\Gamma} \otimes \vec{\mathbf{\Gamma}} = \begin{pmatrix} A + D - D\Gamma_1^2 & -D\Gamma_1\Gamma_2 & -D\Gamma_1\Gamma_3 \\ -D\Gamma_1\Gamma_2 & B + D - D\Gamma_2^2 & -D\Gamma_2\Gamma_3 \\ -D\Gamma_1\Gamma_3 & -D\Gamma_2\Gamma_3 & C + D - D\Gamma_3^2 \end{pmatrix},$$

$$\det(\mathsf{I}) = (A+D)(B+D)(C+D)(1-D\big(\frac{\mathsf{\Gamma}_1^2}{A+D} + \frac{\mathsf{\Gamma}_2^2}{B+D} + \frac{\mathsf{\Gamma}_3^2}{C+D}\big)\big).$$

The first integrable case (generic I, arepsilon=-1)

Condition $\varepsilon = -1$ corresponds to configuration III for 2r = 3R. We get the following statement.

Theorem

The spherical ball bearings problem (17) in the configuration III, when 2r = 3R, i.e., the radius of the moving sphere S is twice the radius of the fixed sphere S₀, is integrable. The third integral is

$$F_3 = (B+C-A+D)\mathsf{M}_1\mathsf{\Gamma}_1 + (A+C-B+D)\mathsf{M}_2\mathsf{\Gamma}_2 + (A+B-C+D)\mathsf{M}_3\mathsf{\Gamma}_3.$$

For d = 0, the integral F_3 reduces to the one found by Borisov and Fedorov for the rolling of a Chaplygin ball over a sphere.

The second integrable case $(B = C, \text{ generic } \varepsilon)$

Theorem

The spherical ball bearings problem (17) for B = C is integrable for all ε . Along with F_1 and F_2 , the system has two additional, nonalgebraic first integrals F_3 and F_4 :

$$F_{3,4} = \left(\pm \sqrt{D(A-C)}F + DG - dC\right)\exp(\pm(1-\varepsilon)\sqrt{D(A-C)}\Phi).$$

Note that the product of the two nonalgebraic first integrals

$$F_{3}F_{4} = (DG - dC)^{2} - D(A - C)F^{2}$$

= $D^{2}G^{2} - 2dCDG + d^{2}C^{2} - D(A - C)$
 $(C(A + D)\Omega_{1}^{2} + D(A - C)\Omega_{1}^{2}\Gamma_{1}^{2})$

is an affine combination of F_1 and F_2 :

$$F_3F_4 = CD(C+D)\langle ec{M},ec{\Omega}
angle - CD\langle ec{\mathsf{M}},ec{\mathsf{M}}
angle - C(C+D)d^2.$$

Rubber Chaplygin ball, gyroscopic Chaplygin ball

- D. K. Bobilev, About a ball with an iside gyroscope rollong without sliding over the plane, Mat. Sb., 1892.
- N. E. Zhukovskiy, *About the Bobilev gyroscopic ball*, Trudy Otdela Fiz. Nauk, 1893.
- A. P. Markeev, *On integrability of problem on rolling of ball with multiply connected cavity filled by ideal liquid*, Proc. of USSR Acad. of Sciences, Rigid body mech. **21**(2) (1985), 64–65.
- V. Demchenko, *Rolling without sliding of a gyroscopic ball over a sphere, doctoral dissertation*, University of Belgrade, 1924, pp. 94, printed "Makarije" A.D. Beograd-Zemun.

K. Ehlers, J. Koiller, *Rubber rolling over a sphere*, Regul. Chaotic Dyn. **12** (2007), 127–152, arXiv:math/0612036.

- A. V. Borisov, I. S. Mamaev, Rolling of a non-homogeneous ball over a sphere without slipping and twisting, Regul. Chaotic Dyn. 12 (2007), 153–159.
- L. C. Garcia-Naranjo, *Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere*, Theor. Appl.

Demchenko PhD thesis under supervision of A. Bilimović, M. Milanković and M. Petrović

Rubber and gyroscopic Chaplygin ball II

- B. J, *Rolling balls over spheres in* ℝⁿ, Nonlinearity **31** (2018), 4006–4031.
- B. J, Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization, Theor. Appl. Mech. **46**(1) (2019), 97–108.
- B. Gajić, B. J, Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere, Nonlinearity 32(5) (2019), 1675–1694.
- B. Gajić, B. J, *Two integrable cases of a ball rolling over a sphere in* ℝⁿ, Rus. J. Nonlin. Dyn., **15**(4) (2019), 457–475
- V. Dragović, B. Gajić, B. J, *Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis*, Theor. Appl. Mech. **47**(2) (2020), 257–287.
- V. Dragović, B. Gajić, B. J, Gyroscopic Chaplygin systems and integrable magnetic flows on a sphere, J. Nonlinear Sci.33 (2023) 43, 51pp.

Thank you!!!

The research was supported by the Project no. 7744592 MEGIC "Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics" of the Science Fund of Serbia.