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(1) Introduction

Formation of localized structures in the form of
solitons in many physical settings is accounted for by
the interplay of nonlinear self-attraction (alias self-
focusing) of physical fields (e.g., electromagnetic
waves in photonics, or macroscopic wave functions,
alias matter waves, in Bose-Einstein condensates,
BECSs) and basic linear effects, such as dispersion or
diffraction.



Arguably, the most important model which creates solitons
IS the nonlinear Schrodinger (NLS) equation:
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It generates a family of bright-soliton solutions with two
free parameters - amplitude » and velocity c:
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The exact integrability of this equation, and of its
counterpart with the self-repulsive (defocusing)
nonlinearity,
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by means of the inverse-scattering transform, had been
discovered in the classical work by V.E. Zakharov and
A.B. Shabat (originally published in Russian),

V. E. Zakharov and A. B. Shabat, Exact Theory of Two-
dimensional Self-focusing and One-dimensional Self-modulation
of Waves in Nonlinear Media,

J. EXp. Theor. Phys. 34, 62-69 (1972).




Solitons of the NLS type in nonlinear optical fibers were
predicted by Hasegawa and Tappert in 1973 (Appl. Phys.
Lett. 23, 142-144), and experimentally created by

Mollenauer, Stolen and Gordon in 1980 (Phys. Rev. Lett.

45, 1095-1098).
They also observed two-soliton bound states (breathers):
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Another famous realization of solitons was demonstrated in
BEC loaded in nearly one-dimensional (“cigar-shaped”)
trapping potentials. Such bright matter-wave solitons were
first created in the condensate of ‘Li atoms:

K.E. Strecker, G.B. Partridge, A.G. Truscott, and R. G.
Hulet, Nature 417, 150 (2002);

_. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J.
Cubizolles, L.D. Carr, Y. Castin, and C. Salomon, Science
296, 1290 (2002).




The famous experimental picture of the atomic density
distribution in a chain of 7 matter-wave solitons with
unequal amplitudes in “Li (from the work of R. Hulet et al.):




(2) The subject of the talk: multidimensional

solitons

A more challenging objective is to predict and create
experimentally two- and three-dimensional (2D and
3D) solitons. On the contrary to their 1D counterparts,
which are, normally, stable, the ubiquitous cubic self-
focusing always makes 2D and 3D solitons unstable,
as exactly the same self-interaction gives rise to
fundamental destabilizing effects: the critical
collapse in 2D, and supercritical collapse in 3D (l.e.,
catastrophic self-compression of the wave function, which
leads to formation of a singularity after a finite evolution
time).



First, let us look at 2D solitons produced by the NLS
equation with the self-focusing cubic nonlinearity,

iu, +(1/2)(u,, + u,,) + |uju =0.

Soliton solutions with integer vorticity S and
chemical potential u are looked for, In the polar
coordinates (r,0), as
u = exp(-lut+iSO) Ug(r).
The real radial wave function U, (r) satisfies the equation
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The profile of U,(r) for a fundamental (zero-vorticity, S = 0) 2D
soliton [alias the Townes’ soliton, R.Y. Chiao, E. Garmire & C. H.
Townes, Phys. Rev. Lett . 13, 479 (1964)].
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The families of the Townes’ solitons (and their vortex

counterparts) are degenerate: due to the specific conformal
symmetry of the 2D NLS equation with the cubic
nonlinearity, the norm of each family (with S =0,1,2, etc.),

N :Zﬂjooousz(r;y)rdr,

takes a single value, which does not depend on the
soliton’s chemical potential, y. In particular,

for S =0 (the fundamental Townes' solitons), N, = 5.85.



For S >1, the norm Is accurately approximated by
N, = ZﬂJ.OOOUSZ(r;y)rdr ~ 43 7S,

as demonstrated In
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The numerically simulated development of the
collapse of the fundamental Townes soliton in 2D (the
evolution of the radial cross section of the collapsing
soliton towards the formation of a singularity):




Examples of the spontaneous splitting of unstable 2D
vortex solitons with vorticities S=1and S = 2:

(a) (b) (©)




The norm of the Townes’ soliton is a threshold value which
separates collapsing (N > N,) and decaying (N < N)
localized solutions of the 2D NLS equation.

A stabilizing mechanism, added to the 2D NLS equation,
may act by letting the norm of 2D solitons take values N < N,
(but avoiding the decay), so that they cannot undergo the
collapse, as their norm falls below the threshold value
necessary to initiate the collapse.

Stabilization of vortex solitons is a still more challenging
problem.

However, in the 3D NLS equation, the situation is more
difficult, as the collapse is supercritical, with zero
threshold. This fact suggests that 3D solitons may be made
metastable, in the best case, as the collapse remains
possible.



Thus, stabilization is the most important issue for
multidimensional solitons (alias spatiotemporal solitons, in
terms of optics). A review summarizing theoretical and
experimental findings in this area:

Nature Reviews Physics 1, 185-197 (2019)

Frontiers in multidimensional
self-trapping of nonlinear fields
and matter

Yaroslav V. Kartashowv('~, Gregory E. Astrakharchik®, Boris A. Malomed*=5"
and Lluis Tornerf'9*




Another review article, specifically focused on 2D
and 3D solitons with embedded vorticity (which is
one of central topics of the present talk):

Physica D 399 (2019) 108-137

Contents lists available at ScienceDirect
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journal homepage: www.elsevier.com/locate/physd
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A recent review article summarizes theoretical and
experimental findings for multidimensional solitons In
dissipative media:

Chaos, Solitons and Fractals 163 (2022) 112526

Contents lists available at ScienceDirect
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All the results, theoretical and experimental ones, are presented in a
systematic form in a new book (published by the American Institute of
Physics, Melville, NY, 2022):
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As the stability is the main issue for 2D and 3D settings, the rest of
the talk is structured according to basic mechanisms which provide
for stabilization of the multidimensional solitons:

(3) Relatively old findings: Stable 2D and 3D vortex solitons in
models with the cubic-quintic (CQ) nonlinearity (in a brief form).
(4) A relatively new model: Stable 2D and 3D composite solitons in
two-component spin-orbit (SO)-coupled BEC.

(5) Latest theoretical and experimental results: the prediction and
creation of 3D and 2D matter-wave solitons (“guantum droplets”)
stabilized by quantum fluctuations.

(6) Conclusions.



(3) 2D and 3D Systems with the
cubic-quintic nonlinearity

The stabilization of 2D and 3D
fundamental and vortical solitons can be
provided by a combination of competing
self-focusing cubic and self-defocusing
guintic nonlinear terms.



In optics, the 3D NLS equation can be written as
the equation governing the spatiotemporal
evolution of the electromagnetic field:
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Stationary solutions with integer vorticity, S >0, and
propagation constant (wavenumber) k, are

looked for in the cylindrical spatiotemporal coordinates as
u(x,y,z,z) =U(r,7)exp(ikz +iS0), r =/x*+y?,

with U (r, ) satisfying the stationary equation:
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The 2D reduction of the 3D equations implies dropping the
term o°U / 07°.



The stability of fundamental solitons (S = 0) in the framework
of this equation is obvious. A nontrivial problem is the stability
of vortex solitons against splitting by azimuthal perturbations.

For 2D vortex solitons, the stability was first reported in

J. Opt. Soe. Am. B/Vol. 14, No. 8/ August 1997 M. Quiroga-Teixeiro and H. Michinel

Stable azimuthal stationary state in quintic
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An example of the dynamical stability and
elastic collision of 2D vortex solitons with S = 1:




Experimentally, the stability of (2+1)D fundamental (S = 0)
solitons in an optical cubic-quintic medium was
demonstrated relatively recently:

week ending

PRL 110, 013901 (2013) PHYSICAL REVIEW LETTERS 4 JANUARY 2013
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The excitation of near-infrared (2 + 1)D solitons in liquid carbon disulfide is demonstrated due to the
simultaneous contribution of the third- and fifth-order susceptibilities. Solitons propagating free from
diffraction for more than 10 Rayleigh lengths although damped, were observed to support the proposed
soliton behavior. Numerical calculations using a nonlinear Schrodinger-type equation were also
performed.



Fully stable vortex solitons have not yet been created In
the experiment. However, guasi-stable ones have been
reported In

PHYSICAL REVIEW A 93. 013840 (2016)
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The vortex soliton starts expansion due to nonlinear losses

(multiphoton absorption).
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A challenging problem is to construct 3D vortex
solitons in the cubic-quintic medium, and

analyze their stability. Theoretically, this was
done long ago In:

VOLUME 88, NUMBER 7 PHYSICAL REVIEW LETTERS |8 FEBRUARY 2002

Stable Spinning Optical Solitons in Three Dimensions
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D-07743, Jena, Germany
38chool of Mathematics and Statistics, University of New South Wales at ADFA, Canberra, ACT 2600, Australia
YFaculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
>Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, ES 08034 Barcelona, Spain
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An example of numerically simulated recovery
of a strongly perturbed 3D stable soliton with
intrinsic vorticity S =1 (doughnut):

(a) (b)




An example of the instability of the 3D
doughnut soliton with vorticity S = 2, viz.,
splitting In three fragments:




(4) Novel results: Stable two- and three-
dimensional composite solitons in spin-
orbit (SO)-coupled self-attractive BEC



(4a) Introduction and objectives

The concept of emulation (alias simulation) of
complex physical effects, known in condensed-
matter physics, by much simpler settings
available in BEC (matter waves) and
photonics (optical waves), has drawn a great
deal of interest:

P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch,
and M. Lewenstein, Rep. Prog. Phys. 75, 082401

(2012).



An important topic which is enabled by this
approach: the emulation of spin-orbit (SO)
Interactions in semiconductors, such as those
accounted for by the Rashba and Dresselhaus
Hamiltonians. It is performed by mapping the
spinor wave function of electrons (fermions) into
the pseudo-spinor (two-component) bosonic
wave function of a binary BEC gas:

Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman,
Nature 471, 83 (2011);

Y. Zhang, L. Mao, and C. Zhang, Phys. Rev. Lett.
108, 035302 (2012);

A review: H. Zhai, Rep. Prog. Phys. 78, 026001
(2015).



(4b) The model

The system of 2D Gross-Pitaevskii (GP) equations for the two-

component wave function (@,, @_) of the binary BEC coupled

by the SO terms with strength A and coefficient of the cubic
self-attraction = 1:
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(4c) References. Basic results are presented here for 2D solitons as per
the following papers:
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(4d) Semi-vortex states

The coupled GP equations admit a family of solutions for semi-
vortices, with vorticities m_ = 0 in one component, and m_=1
In the other. The exact ansatz for these solutions, compatible
with the underlying equations (u < 0 is the chemical potential):

&, (X y,t)=ex
é (X, y,t)=ex

0(—iut) f.(r),

0 (—ipt +i0)rf_(r),

with f, (r) taking finite values at r =0
and decaying ~ exp(—/—2ur) atr - o .



A numerically generated cross-section (along y = 0)
of the two components, A = |¢@,]|, for a stable semi-
vortex:




The numerically found dependence between the total norm of the semi-
vortices and their chemical potential demonstrates that (1) the norm of the
semi-vortex indeed falls below the threshold value necessary for the onset
of the collapse: N(i) < N, E N(u — -) = 5.85; (2) there is no finite
minimum value of the norm necessary for the existence of the semi-vortex;
(3) the dependence satisfies the Vakhitov-Kolokolov criterion, du/dN < 0,

which is a necessary condition for the stability:
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(4e) Mixed modes

The extended system of the 2D Gross-Pitaevskii equations for the
two-component wave function (@, ®_), which includes both

the linear SO coupling and nonlinear cross-interaction with
relative strength y > 0:

0p, 1, 2 ; Wi
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In the presence of the nonlinear cross-coupling, the semi-vortices remain
stable at ¥ <1, and become unstable at y <1. In that case, another class

of stable localized states can be constructed in the form of mixed modes,

so called because they mix fundamental and vortical terms in each component,
namely, m, = (0,-1) and m, =(0,+1), as per the following ansatz, which

was used as a basis of the variational approximation (but it does not produce
an exact solution):

g, = Aexp(-ar’) - Arexp(-i0-a,r?),

p = Aexp(—ayr®)+ Arexp(+i0-a,r?).

A typical example of the cross-section of the mixed mode:
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The result is that the mixed modes are unstable aty < 1, and
stable at y > 1, exactly when the semi-vortex is stable or
unstable, respectively.

This stability switch between the semi-vortex and mixed
mode with the increase of y is explained by the fact that the
semi-vortex and mixed mode are ground states, which
realize the minimum of the system’s energy, E, precisely at

v <1andy>1, respectively.
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The dependence of the energy of the semi-vortex
(“0”) and mixed mode (“01") on y, for a fixed value of
the total norm, N = 3.7:
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(4f) The stabilization of 3D solitons
by the SO coupling

week ending
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The 3D model with the SO coupling (in
particular, of the Weyl type) is based on the
following system of GP equations for the two-
component wave function, with the vector of
Pauli matrices, o= (0,, 0,, 0,),and g = +1,
n > 0 (the attractive nonlinearity, which gives
rise to the supercritical collapse in 3D):

0 1

_EE+§T +iAV - o

v+l [ 0 ‘
e o =0,
*ﬂ( 0 w2+ nfes? )|




Examples of (meta) stable 3D solitons, with
N = 8 [(a), for n = 0.3 — a semi-vortex;(b), for
n=15-amixed mode].

@1 (a2)

Z,

i

},II]




(5) The newest addition: stabilization of 3D and 2D “superfluid
droplets” by quantum fluctuations

Starting in 2015, a stream of theoretical predictions and direct experimental
observations, closely related to the topic of multidimensional solitons, has
emerged: the creation of 3D and 2D soliton-like states in binary BEC, named
“guantum droplets”. They are made stable by the Lee-Huang-Yang (LHY)
correction to the BEC dynamics, which represents effects of quantum
fluctuations (Bogoliubov’s modes) around the mean-field states:

T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose
system of hard spheres and its low-temperature properties, Phys. Rev. 106,
1135 (1957).

Chen-Ning Yang in 1957 Tsung-Dao Lee in 1956
(currently 100 years old) (currently 96 years old)




(5a) The idea of the quantum droplets, in 3D and 2D
geometries, was proposed by Dmitry Petrov (Paris-
Saclay):

week ending

PRL 115, 155302 (2015) PHYSICAL REVIEW LETTERS 9 OCTOBER 2015

Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture

D.S. Petrov
Université Paris-Sud, CNRS, LPTMS, UMRS8626, Orsay, F-91405, France
(Received 28 June 2015; published 7 October 2015)
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The starting point is a system of coupled GP equations for two
components of the mean-field wave function of a binary BEC,
with self-repulsion in each component and attraction between the
components, which slightly exceeds the self-repulsion.

Assuming equal wave functions of both components, ¥, =¥, =,
the system of two GP equations in 3D may be reduced to the single
one:

oY 1
—=——VY- |V ¥Y+y |V Y,
o 2

where » > 0 Is an effective strength of the quartic
self - repulsion term which represents the LHY correction.



(5b) Fundamental (zero-vorticity) droplets:

solutions and experimental realizations

Stationary solutions for quantum droplets with chemical potential
M < 0 are looked for as W = exp(-iut) ®@(r), with real functions ®(r)
satisfying equations

U =

d°’®d 2do 3
—— O +
(dr rdrj el

Due to the competition between the attractive and repulsive
nonlinearities, density ®2 of the solutions cannot exceed the
following maximum value:

(cpz)max =(25/36)y



For this reason, the quantum matter described by this
equation may be considered as an effectively
iIncompressible fluid, hence the name of “guantum

droplets”.

Cross sections of the guantum-droplet solutions with
small (right, bell-shaped) and large (left, flat-top
“droplets”) total norms:
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Experiment. The creation of quasi-2D (oblate) droplets,
with aspect ratio ~ 10:1 and lifetime ~10 ms, built of

~10,000 39K atoms (in two different hyperfine states) per

droplet, was reported by the group of Leticia Tarruell from
ICFO (Barcelona): Science 359, 301 (2018)

Quantum liquid droplets in a mixture
of Bose-Einstein condensates

C. R. Cabrera,”* L. Tanzi,* J. Sanz, B. Naylor, P. Thomas, P. Cheiney, L. Tarruell{
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The creation of nearly isotropic 3D quantum
droplets (with negligible confinement in any direction)
In the same atomic species, 39K, was reported by the
group of Massimo Inguscio (Florence) :

PHYSICAL REVIEW LETTERS 120, 235301 (2018)

Self-Bound Quantum Droplets of Atomic Mixtures in Free Space

G. Semeghini,'*" G. Ferioli,"* L. Masi,"* C. Mazzinghi,' L. Wolswijk,! FE. Minardi,>' M. Modugno,*
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'LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino, Italy
2CNR Istituto Nazionale Ottica, 50019 Sesto Fiorentino, Italy
3Df,rmrr‘fmenm di Fisica e Astronomia, Universita di Bologna, 40127 Bologna, Italy
4Depan‘am€nm de Fisica Tedrica e Historia de la Ciencia, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao, Spain
"IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain



(5¢c) Extension of the theory: quantum droplets

with embedded vorticity

Vortex-droplet states, with vorticity S=1,2,3,...,
were constructed in the 2D model, looking for
solutions (in the polar coordinates, r and 0) as

WY =exp(-ipt +1SO)U(r), with gy < 0.

PHYSICAL REVIEW A 98, 063602 (2018)

Two-dimensional vortex quantum droplets
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A more advanced theoretical result: prediction of
stability regions for fully 3D droplets, with embedded
vorticities S = 1 and 2:

PHYSICAL REVIEW A 98, 013612 (2018)

Three-dimensional droplets of swirling superfluids

Yaroslav V. Kartashov,"2-" Boris A. Malomed,? Leticia Tarruell,! and Lluis Torner'-*
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Examples of splitting of an unstable 3D vortex droplet
(the top row), and of the evolution of a stable one (the
bottom row). In both cases, S = 1.
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A relatively recent review on the topic of
guantum droplets (theory and experiment):
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(6) Conclusions

Recent theoretical and experimental studies have led
to the prediction and, in some cases, experimental
creation of stable self-trapped modes in the form of
fundamental and vortex solitons in 2D and 3D
geometries. Especially interesting are the predicted
possiblilities for the creation of (meta)stable semi-
vortices by means of the SO (spin-orbit) coupling for
the binary BEC with cubic attractive interactions
(something which was previously considered
absolutely impossible), as well as the

theoretically predicted and experimentally realized
creation of 3D superfluid droplets, stabilized by
guantum fluctuations.




Generally, the theoretical studies of multidimensional
solitons have advanced much farther than the
experimental work. Creation of stable 2D and 3D
solitons in real experiments remains a challenging
objective.




Thank you for your interest!
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