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Motivation   
 
 
We are inspired by question how nonlinearity deals with properties of photonic 
topological insulators. 
 
Pre-steps:  
 ability to scan the topological properties of photonic bands by modulation 

instability [1] 
 excitation of topological transition by nonlinearity [1],  
 topological properties of nonlinear Floquet lattices [2] 
 
Breaking point: 
Menssen [3]=> FIRST EXPERIMENTAL REALIZATION OF A STATE BOUND TO 
VORTEX REPRESENTED BY A POINT DEFECT IN 2D LINEAR PHOTONIC GRAPHENE  
 
How nonlinearity shapes the properties of this protected state?  
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Talk overview: 
 
I Introduction 
 
II Model equations 
      
  Graphene like hexagonally shaped lattice 
  Vortex distortion –> topological phase transition     
                
 III Topological zero mode 
 
  Genesis of zero-mode 
 
  Tuning the zero-mode lasing by driving effect (saturable nonlinear gain & linear loss) 
 
  Lasing zero-mode in the presence of nonlinear lattice response    
  
 
  IV Summary 
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I INTRODUCTION 
 
Topological photonics is a rapidly emerging field of research in which geometrical  
and topological ideas are exploited to design and control the behavior of light [4,5]. 
 
Topological insulators and topologically protected modes 
 
We considered photonic equivalent of  graphene - ‘Dirac material’ –  
hexagonal (honeycomb) bipartite lattice consisting of two sublattices A and B,  
with sites from one sublattice directly interacting only with sites from the other  
sublattice.  Energy spectrum is symmetric around zero energy. 
 

  

Fig. 1 Hexagonal lattice with 
bipartite symmetry  

4 



In the absence of distortion – topologically trivial – with two  strongly coupled 
bands (Dirac points at the 1st BZ boundaries) 
 
 
Vortex distortion opens the gap between bands which hosts zero-mode – 
topologically nontrivial state 
 
 
We investigated ability to manage light propagation (guiding, coupling, lasing)  
via zero-modes utilizing nonlinear response and driving [6].  
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II Model equations 
                             

 
Hamiltonian of hexagonally shaped bipartite lattice with vortex distortion: 
 

Linear lattice Hamiltonian (tight-binding approximation) 

 𝐻 = 𝐻 𝑙𝑎𝑡𝑡 +𝐻 𝐾𝑒𝑟𝑟 + 𝐻 𝑔𝑎𝑖𝑛 

                             𝐻 𝑙𝑎𝑡𝑡 = − 𝑡 + 𝛿𝑡𝑟 ,𝑟 ′𝑟 ,𝑟 ′ 𝑎 𝑟 
†𝑏 𝑟 + +ℎ. 𝑐.  

𝑡 – coupling strength 
 

𝛿𝑡𝑟 ,𝑟 ′  -a Kekule vortex-like distortion [3,6,7] 

(experimentally induced by small shifts in the WGs positions [3]) 

(1) 

(2) 
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  𝛼 – vortex phase 

 

 Vortex distortion  Coupling of two Dirac valleys by distortion  
                                                opening of the gap in energy spectrum  
                                                creation of topological zero-mode (‘Majorana’ mode) 

 

 

 

Fig. 2 (a) Dirac points at the  1st BZ boundaries are connected by reciprocal vector  [7]. (b)The eigenvalues  of 
lattice without and with vortex distortion.   

𝛿𝑡𝑟 ,𝑟 ′ =
Δ 𝑟 exp (𝑖Κ+𝑠 𝑗)

3
+c.c. 

Δ 𝑟 =Δ0tanh 
𝑟

𝑙0
𝑒𝑖(𝛼+𝜒Θ) 

(a) (b) 

(3) 
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𝑖𝜕𝑧 𝜓 𝑟 , 𝑧 >= 𝐻 𝜓 𝑟 , 𝑧 > 

Hamiltonian of ‘driving’ 

Equation of light propagation 

 𝐻 𝑔𝑎𝑖𝑛 = 𝑖  
Γ𝐴

1+ 𝑎𝑟
2 𝑎 𝑟 

†𝑎 𝑟 +
Γ𝐵

1+ 𝑏𝑟
2 𝑏 𝑟 

†𝑏 𝑟 − 𝛾𝐴𝑎 𝑟 
†𝑎 𝑟 − 𝛾𝐵𝑏 𝑟 

†𝑏 𝑟 𝑟  

Nonlinear Hamiltonian 

 𝐻 𝐾𝑒𝑟𝑟 =
𝐺

2
 

1

1+ 𝑎𝑟
2 𝑎 𝑟 

†𝑎 𝑟 +
1

1+ 𝑏𝑟
2 𝑏 𝑟 

†
𝑏 𝑟  𝑟  (4) 

(5) 

(6) 

8 



𝑁 𝑧 = 𝑁𝐴 𝑧 + 𝑁𝐵 𝑧 , 𝑁𝐴(𝐵) =  |𝑎𝑟(𝑏𝑟)|
2 

P z = 𝑃𝐴 𝑧 + 𝑃𝐵 𝑧 ,      𝑃𝐴(𝐵) = ( |𝑎𝑟(𝑏𝑟)|
2)2/ (|𝑎𝑟(𝑏𝑟)|

4) 

F(z)= 𝜓𝑟 𝑧 𝜓𝑟 
𝑍𝑀

𝑟  

 Dynamical considerations :   
 
      To solve Eq. (6) numerical Runge-Kutta method of 4th order 

Total norm and norms in A and B 

Participation numbers: total and in  A/B 

Fidelity 

(7) 

(8) 

(9) 
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 Emerge after applaying distortion to the 
underlying lattice; 

 

 Lie in the mid-gap at zero energy;  

 

 Extremaly robust to the external 
perturbation – disorder. 

 

 
III Topological zero-mode: 

Fig. 3  Zero-mode indicated at the centre of the                                                                                                                                                                    
vortex presented in [3]. 
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 Consists of components in each sublattices, which are either localized around 
the vortex center (vortex component) or along the edge (edge component) 

 

 

 

 

 

 

 

 

 

 
 

 Does the zero-mode robustness provide lasing light?  

 Does local nonlinear intensity-dependent lattice response deal in favor of 
the zero-mode lasing? 

 

Fig. 4 The zero-mode components  
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 Nonlinear saturable gain + linear loss  = generator of lasing zero-mode 
(zero or weak local nonlinearity) 

Fig.  5 Noise amplification and lasing via the zero-mode : ΓA/γA = 10, ΓB = 0, γA = 0.01, γB/γA = 10, G=0, α = −π/2.  
a) N vs. z in log scale, b)  P, c) F,  d)  intensity profiles at z = 500 (steady state lasing regime) 

-Zero-mode is excited from the noise background owing the gain-loss mechanism 
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Pumped vortex component (sublattice A) linear loss  
 
coupling between the sublattices  
  
redistribution of energy to edge component (sublattice B) 
 
feedback loop: the sublattice B loss stimulates the more efficient excitation of the 
sublattice A.  

Fig. 6  Fidelity vs. gain in A and ratio of loss parameters, G=0  (similar for weak G). 
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Zero-mode lasing  vs. local intensity-dependent nonlinear lattice response:  
 
|G| < 0.1 –robust vortex-edge –component lasing   F is in the range [0.9, 1] 
 0.1< |G| < 0.9 – robust vortex component lasing 
|G| > 0.9 – delocalized radiation  destruction of the zero-mode lasing. 
 
 

 

Fig. 7  F(z)  vs. G. : ΓA/γA = 10, ΓB = 0, γA = 0.01, γB/γA = 10. 
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Key points:  
 
- Excitation of the zero-mode from a noisy background by tuning sublattice 
dependent saturable gain and linear loss 

 
- Creation of stable lasing in an unfolded lattice resonator 

 
- Deterioration of lasing by intensity-dependent nonlinearity in the limit of huge  
powers of light – strong nonlinearity. 
 
Our study opens the door to an unhindered propagation and amplification of a 
coherent zero-mode and proposes the design of new topological lasers in active 
photonic media [6] :  WGAs, MCFs,  lattices of ring resonators.   
 

           

IV SUMMARY 
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