KdV Breathers from Soliton-Cnoidal Wave Interactions

Ana Mucalica, ¹ Dmitry Pelinovsky, ¹ Mark Hoefer ²

¹Department of Mathematics and Statistics, McMaster University

²Department of Applied Mathematics, University of Colorado Boulder

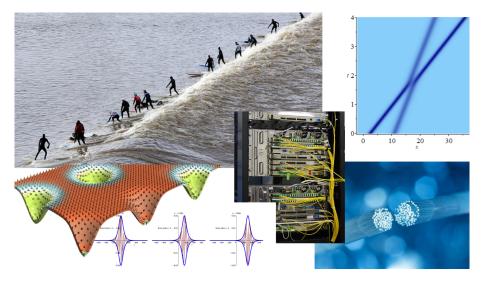
3rd Conference on Nonlinarity

Table of Contents

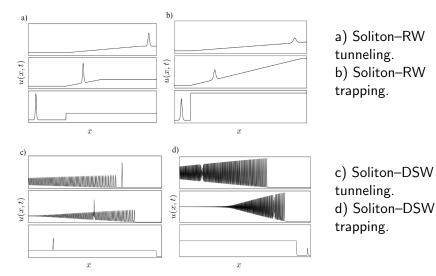
Introduction - Motivation and Background

- 2 Main Model: KdV Solitons and Cnoidal Waves
- Construction of the KdV Topological Breather Solutions
- 4 Breather Fluid Experiments

Solitons appear in nature under number of circumstances...



Motivation for Soliton-Dispersive Wave Interactions



M. J. Ablowitz, J. T. Cole, M. A. Hoefer, et al. ArXiv 2211.14884v1, (2022).

Ana Mucalica

Breather Classification

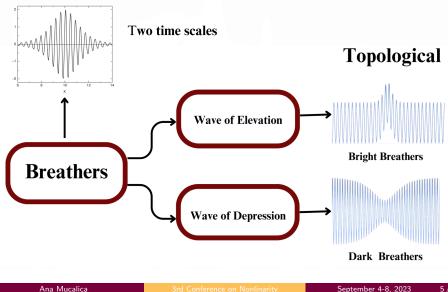


Table of Contents

Introduction - Motivation and Background

2 Main Model: KdV Solitons and Cnoidal Waves

Construction of the KdV Topological Breather Solutions

4 Breather Fluid Experiments

Main Model

We are dealing with the canonical model for the shallow water waves, the Korteweg–de Vries (KdV) equation:

$$u_t + 6uu_x + u_{xxx} = 0, \tag{1}$$

where t is the time evolution, x is the spatial coordinate for the wave propagation, and u is the fluid velocity.

Main Model

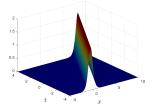
We are dealing with the canonical model for the shallow water waves, the Korteweg–de Vries (KdV) equation:

$$u_t + 6uu_x + u_{xxx} = 0, \tag{1}$$

where t is the time evolution, x is the spatial coordinate for the wave propagation, and u is the fluid velocity.

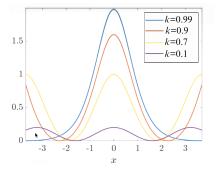
One-soliton solution of the KdV equation (1)

$$u(x,t) = 2\mu^2 \operatorname{sech}^2 (\mu(x-4\mu^2 t - x_0))$$



KdV equation (1) has a family of traveling periodic wave solutions

$$u(x,t) = 2k^2 cn^2 (x - ct; k), \qquad c = 4(2k^2 - 1).$$



Idea: Use the one-fold DT to superimpose one soliton on a cnoidal wave background.

Ana Mucalica

Inverse Scattering Transform (IST):

$$\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \qquad \mathcal{L} := -\frac{\partial^2}{\partial x^2} - u$$
 (2)

and

$$\frac{\partial v}{\partial t} = \mathcal{M}v, \qquad \mathcal{M} := -3u_{x} - 6u\frac{\partial}{\partial x} - 4\frac{\partial^{3}}{\partial x^{3}}, \qquad (3)$$

 λ is the time-independent spectral parameter.

Inverse Scattering Transform (IST):

$$\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \qquad \mathcal{L} := -\frac{\partial^2}{\partial x^2} - u$$
 (2)

and

$$\frac{\partial v}{\partial t} = \mathcal{M}v, \qquad \mathcal{M} := -3u_x - 6u\frac{\partial}{\partial x} - 4\frac{\partial^3}{\partial x^3},$$
 (3)

 λ is the time-independent spectral parameter.

 \Rightarrow (2) is the stationary Schrödinger equation

Inverse Scattering Transform (IST):

$$\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \qquad \mathcal{L} := -\frac{\partial^2}{\partial x^2} - u$$
 (2)

and

$$\frac{\partial v}{\partial t} = \mathcal{M}v, \qquad \mathcal{M} := -3u_{x} - 6u\frac{\partial}{\partial x} - 4\frac{\partial^{3}}{\partial x^{3}},$$

 λ is the time-independent spectral parameter.

- \Rightarrow (2) is the stationary Schrödinger equation
- \Rightarrow (3) represents the time evolution of the eigenfunctions

(3)

Inverse Scattering Transform (IST):

$$\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \qquad \mathcal{L} := -\frac{\partial^2}{\partial x^2} - u$$
 (2)

and

$$\frac{\partial v}{\partial t} = \mathcal{M}v, \qquad \mathcal{M} := -3u_{x} - 6u\frac{\partial}{\partial x} - 4\frac{\partial^{3}}{\partial x^{3}},$$

 λ is the time-independent spectral parameter.

- \Rightarrow (2) is the stationary Schrödinger equation
- \Rightarrow (3) represents the time evolution of the eigenfunctions

-

Darboux Transformation:

$$\hat{u} := u + 2 \frac{\partial^2}{\partial x^2} \log(v_0)$$

u is the known solution for the KdV equation (1).

(3)

Table of Contents

1 Introduction - Motivation and Background

2 Main Model: KdV Solitons and Cnoidal Waves

3 Construction of the KdV Topological Breather Solutions

4 Breather Fluid Experiments

Lamé equation as the Spectral Problem

The spectral problem (2) with the normalized cnoidal wave potential is known as the Lamé equation

$$v''(x) - 2k^2 \operatorname{sn}^2(x,k)v(x) + \eta v(x) = 0, \quad \eta := \lambda + 2k^2$$
 (4)

where the single variable x stands for $x - c_0 t$.

Lamé equation as the Spectral Problem

The spectral problem (2) with the normalized cnoidal wave potential is known as the Lamé equation

$$v''(x) - 2k^2 \operatorname{sn}^2(x,k)v(x) + \eta v(x) = 0, \quad \eta := \lambda + 2k^2$$
 (4)

where the single variable x stands for $x - c_0 t$.

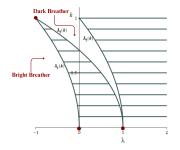


Figure: Floquet spectrum of the Lamé equation (4) with the band edges $\lambda_{1,2,3}(k)$ corresponding to three particular solutions $v_{1,2,3}(x)$.

The Eigenfunctions

Two linearly independent solutions of the Lamé equation (4) for $\lambda \neq \lambda_{1,2,3}(k)$ are given by the functions

$$v_{\pm}(x) = \frac{H(x \pm \alpha)}{\Theta(x)} e^{\mp x Z(\alpha)},$$
(5)

where $\alpha \in \mathbb{C}$ is found from $\lambda \in \mathbb{R}$ by using the characteristic equation $\eta = k^2 + dn^2(\alpha, k)$ and the Jacobi zeta function is $Z(\alpha) := \frac{\Theta'(\alpha)}{\Theta(\alpha)}$.

$$H(x) = \theta_1\left(\frac{\pi x}{2K(k)}\right), \quad \theta_1(u) = 2\sum_{n=1}^{\infty} (-1)^{n-1} q^{(n-\frac{1}{2})^2} \sin(2n-1)u$$

$$\Theta(x) = \theta_4\left(\frac{\pi x}{2K(k)}\right), \quad \theta_4(u) = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos 2nu$$

Bright Breather on the Cnoidal Wave Background

Theorem

There exists an exact solution to the KdV equation (1) in the form

$$u(x,t) = 2\left[k^2 - 1 + \frac{E(k)}{K(k)}\right] + 2\partial_x^2 \log \tau(x,t),$$
 (6)

where the τ -function is given by

$$\tau(x,t) := \Theta(x - c_0 t + \alpha_b) e^{\kappa_b (x - c_b t + x_0)} + \Theta(x - c_0 t - \alpha_b) e^{-\kappa_b (x - c_b t + x_0)},$$
(7)

where $x_0 \in \mathbb{R}$ is arbitrary and $\alpha_b \in (0, K(k))$, $\kappa_b > 0$, and $c_b > c_0$ are uniquely defined from $\lambda \in (-\infty, \lambda_1(k))$.

Solution Surface for Bright Breather on Cnoidal Wave Background

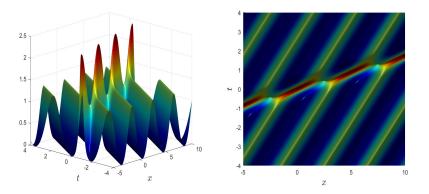


Figure: Bright breather on the cnoidal wave with k = 0.8 for $\lambda = -1.2$ and $x_0 = 0$.

Dark Breather on the Cnoidal Wave Background

Theorem

There exists an exact solution to the KdV equation (1) in the form

$$u(x,t) = 2\left[k^2 - 1 + \frac{E(k)}{K(k)}\right] + 2\partial_x^2 \log \tau(x,t), \tag{8}$$

where the τ -function is given by

$$\tau(x,t) := \Theta(x - c_0 t + \alpha_d) e^{-\kappa_d (x - c_d t + x_0)} + \Theta(x - c_0 t - \alpha_d) e^{\kappa_d (x - c_d t + x_0)},$$
(9)

where $x_0 \in \mathbb{R}$ is arbitrary and $\alpha_d \in (0, K(k))$, $\kappa_d > 0$, and $c_d < c_0$ are uniquely defined from $\lambda \in (\lambda_2(k), \lambda_3(k))$.

Solution Surface for Dark Breather on Cnoidal Wave Background

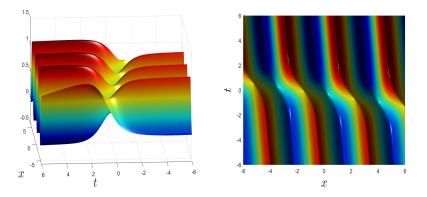


Figure: Dark breather on the cnoidal wave background with k = 0.7 for $\lambda = 0.265$ and $x_0 = 0$.

Direction of Breather Propagation

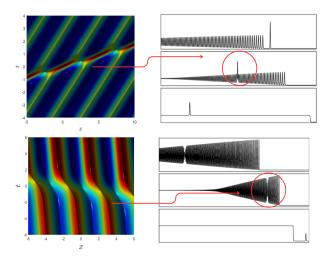


Table of Contents

1 Introduction - Motivation and Background

- 2 Main Model: KdV Solitons and Cnoidal Waves
- **3** Construction of the KdV Topological Breather Solutions
- **4** Breather Fluid Experiments

Experimental Confirmation of the Breather Existence

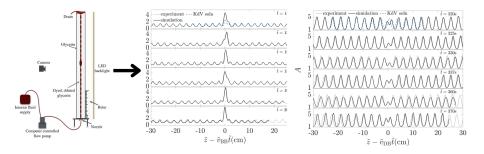


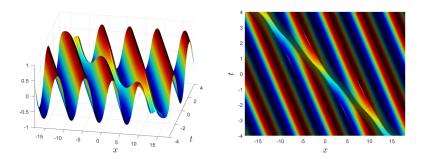
Figure: Experiment (light gray) compared with simulation of the conduit equation (black) with initial conditions from experiment, and the KdV breather solution (blue). Left: Bright Breather. Right: Dark Breather.

Y. Mao, M. A. Hoefer, et al. ArXiv: 2302.11161, (2023).

Future Work

Defocusing modified Korteweg-de Vries (mKdV) equation:

$$u_t - 6u^2 u_x + u_{xxx} = 0,$$
 (10)
$$u(x, t) = k \operatorname{sn}(x + c_0 t; k), \qquad c_0 = 1 + k^2.$$



- M. Hoefer, A. Mucalica and D.E. Pelinovsky, "KdV breathers on a cnoidal wave background", J. Phys. A: Math. Theor. 56 185701 (2023). DOI: 10.1088/1751-8121/acc6a8
- A. Mucalica and D.E. Pelinovsky, "Solitons on the rarefaction wave background via the Darboux transformation", Proc. R. Soc. A 478 (2022). DOI:10.1098/rspa.2022.0474

Thank you!

Ana Mucalica