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Introduction - Motivation and Background

Solitons appear in nature under number of circumstances...
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Introduction - Motivation and Background

Motivation for Soliton-Dispersive Wave Interactions

a) Soliton–RW
tunneling.
b) Soliton–RW
trapping.

c) Soliton–DSW
tunneling.
d) Soliton–DSW
trapping.

M. J. Ablowitz, J. T. Cole, M. A. Hoefer, et al. ArXiv 2211.14884v1, (2022).
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Introduction - Motivation and Background

Breather Classification
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Main Model: KdV Solitons and Cnoidal Waves

Main Model

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (1)

where t is the time evolution, x is the spatial coordinate for the wave
propagation, and u is the fluid velocity.

One-soliton solution of the KdV equation (1)

u(x , t) = 2µ2 sech2 (µ(x − 4µ2t − x0))
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Main Model: KdV Solitons and Cnoidal Waves

KdV equation (1) has a family of traveling periodic wave solutions

u(x , t) = 2k2cn2(x − ct; k), c = 4(2k2 − 1).

Idea: Use the one-fold DT to superimpose one soliton on a cnoidal
wave background.
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Main Model: KdV Solitons and Cnoidal Waves

Tools Used for Construction of Interaction Solutions

Inverse Scattering Transform (IST):

Lv = λv , L := − ∂2

∂x2
− u (2)

and
∂v

∂t
= Mv , M := −3ux − 6u

∂

∂x
− 4

∂3

∂x3
, (3)

λ is the time-independent spectral parameter.

➱ (2) is the stationary Schrödinger equation
➱ (3) represents the time evolution of the eigenfunctions

Darboux Transformation:

û := u + 2
∂2

∂x2
log(v0)

u is the known solution for the KdV equation (1).
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Construction of the KdV Topological Breather Solutions
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Construction of the KdV Topological Breather Solutions

Lamé equation as the Spectral Problem

The spectral problem (2) with the normalized cnoidal wave potential is
known as the Lamé equation

v ′′(x)− 2k2sn2(x , k)v(x) + ηv(x) = 0, η := λ+ 2k2 (4)

where the single variable x stands for x − c0t.

Figure: Floquet spectrum of the Lamé equation (4) with the band edges λ1,2,3(k)
corresponding to three particular solutions v1,2,3(x).
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Construction of the KdV Topological Breather Solutions

The Eigenfunctions

Two linearly independent solutions of the Lamé equation (4) for
λ ̸= λ1,2,3(k) are given by the functions

v±(x) =
H(x ± α)

Θ(x)
e∓xZ(α), (5)

where α ∈ C is found from λ ∈ R by using the characteristic equation

η = k2 + dn2(α, k) and the Jacobi zeta function is Z (α) := Θ′(α)
Θ(α) .

H(x) = θ1

(
πx

2K (k)

)
, θ1(u) = 2

∞∑
n=1

(−1)n−1q(n−
1
2
)2 sin(2n − 1)u

Θ(x) = θ4

(
πx

2K (k)

)
, θ4(u) = 1 + 2

∞∑
n=1

(−1)nqn
2
cos 2nu
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Construction of the KdV Topological Breather Solutions

Bright Breather on the Cnoidal Wave Background

Theorem

There exists an exact solution to the KdV equation (1) in the form

u(x , t) = 2

[
k2 − 1 +

E (k)

K (k)

]
+ 2∂2

x log τ(x , t), (6)

where the τ -function is given by

τ(x , t) := Θ(x − c0t + αb)e
κb(x−cbt+x0) +Θ(x − c0t − αb)e

−κb(x−cbt+x0),
(7)

where x0 ∈ R is arbitrary and αb ∈ (0,K (k)), κb > 0, and cb > c0 are
uniquely defined from λ ∈ (−∞, λ1(k)).
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Construction of the KdV Topological Breather Solutions

Solution Surface for Bright Breather on Cnoidal Wave Background

Figure: Bright breather on the cnoidal wave with k = 0.8 for λ = −1.2 and
x0 = 0.
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Construction of the KdV Topological Breather Solutions

Dark Breather on the Cnoidal Wave Background

Theorem

There exists an exact solution to the KdV equation (1) in the form

u(x , t) = 2

[
k2 − 1 +

E (k)

K (k)

]
+ 2∂2

x log τ(x , t), (8)

where the τ -function is given by

τ(x , t) := Θ(x − c0t + αd)e
−κd (x−cd t+x0) +Θ(x − c0t − αd)e

κd (x−cd t+x0),
(9)

where x0 ∈ R is arbitrary and αd ∈ (0,K (k)), κd > 0, and cd < c0 are
uniquely defined from λ ∈ (λ2(k), λ3(k)).
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Construction of the KdV Topological Breather Solutions

Solution Surface for Dark Breather on Cnoidal Wave Background

Figure: Dark breather on the cnoidal wave background with k = 0.7 for λ = 0.265
and x0 = 0.
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Construction of the KdV Topological Breather Solutions

Direction of Breather Propagation
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Breather Fluid Experiments
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Breather Fluid Experiments

Experimental Confirmation of the Breather Existence

Figure: Experiment (light gray) compared with simulation of the conduit equation
(black) with initial conditions from experiment, and the KdV breather solution
(blue). Left: Bright Breather. Right: Dark Breather.

Y. Mao, M. A. Hoefer, et al. ArXiv: 2302.11161, (2023).
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Breather Fluid Experiments

Future Work

Defocusing modified Korteweg–de Vries (mKdV) equation:

ut − 6u2ux + uxxx = 0, (10)

u(x , t) = ksn(x + c0t; k), c0 = 1 + k2.
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Breather Fluid Experiments

Published Work

M. Hoefer, A. Mucalica and D.E. Pelinovsky, “KdV breathers on a
cnoidal wave background”, J. Phys. A: Math. Theor. 56 185701
(2023). DOI: 10.1088/1751-8121/acc6a8

A. Mucalica and D.E. Pelinovsky, “Solitons on the rarefaction wave
background via the Darboux transformation”, Proc. R. Soc. A 478
(2022). DOI:10.1098/rspa.2022.0474
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Breather Fluid Experiments

Thank you!
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