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 The rigid-body motion in a minimum time, between two specified positions in a vertical 

plane, is considered for the specified value of the initial mechanical energy.  

 

 The problem is formulated and solved in a closed form, which is a contribution of this 

paper, considering non-linear differential equations of the two-point boundary value 

problem of Pontryagin’s maximum principle. 

 

 It is shown that the solution thus obtained also represents global minimum time for 

motion.  

 

 In the spirit of the classical brachistochrone problem of the particle the realization of this 

motion is also achieved exclusively by ideal mechanical constraints (by centroides).  

 

 The laws of change of the tangential and normal component of the constraint reaction are 

obtained in the analytical form. Based on these laws, the dependence of the coefficient of 

sliding friction on time is obtained.  

 

 Maximum value of this coefficient must be smaller than the Coulomb coefficient of 

friction for the case of real rough surface.  If this is not satisfied, an appropriate optimal 

control problem is formulated. 

 



 

 Classical Bernoulli’s problem of determining the brachistochrone for the 

particle in a vertical plane: 

 

Bernoulli, J.: Problema novum ad cuius solutionem Mathematici invitantur (A new 

problem that mathematicians are invited to solve). Acta Eruditorum. 15 (1696), 264–269. 

 

 A more detailed review of literature devoted to these generalizations can be  

found in a doctoral dissertation [2] (Advisor: Oleg Yu. Cherkasov): 

 

Zarodnyuk, A.V., Optimization of controlled descent and generalized brachistochrone 

problems (in Russian), PhD, Moscow State University, Faculty of Mechanics and 

Mathematics, 2018. 

 

 

 Our cooperation (unilateral nonholonomic constraint): 

 

Obradović, A., Cherkasov, O.Y., Miličić, L., The Brachistochronic Motion of Chaplygin 

Sleigh in a Vertical Plane with Unilateral Nonholonomic Constraint, Proceedings of 9th 

International Congress of Serbian Society of Mechanics Vrnjačka Banja, Serbia, July 5-7, 

2023 



 

Rigid body (Fig. 1.) of mass 𝒎 and the radius of inertia 𝒊 is moving in a vertical 

plane. The body position is specified at the initial and final moment. 

Initial value of mechanical energy: 𝒎𝒈𝑳 . 

 
 

 
 

During brachistochronic motion, the mechanical energy remains unchanged: 
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Kinematic differential equations: 

 
�̇� = 𝑼
�̇� = 𝑽
�̇� = 𝜴

 (2) 

 
Dimensionless quantities: 

𝑿 = 𝒊𝒙,     𝒀 = 𝒊𝒚,     𝜴 = 𝝎√
𝒈

𝒊
,     𝑽 = 𝒗√𝒈𝒊,     𝑼 = 𝒖√𝒈𝒊,     𝒕 = 𝝉√

𝒊

𝒈
,     𝑳 = 𝒊𝒍,  

𝑭𝑵 = 𝒎𝒈𝑭𝒏,       𝑭𝑻 = 𝒎𝒈𝑭𝒕,     �̅� = 𝒊�̅�,     �̅� = 𝒊�̅� (3) 
 

 

Equations of state: 

 
𝒙′ = 𝒖
𝒚′ = 𝒗

𝝋′ = 𝝎
 (4) 

 

 

 The notation (...)  represents differentiation with respect to dimensionless time.  
 

 

 

 



 

 

Conservation of mechanical energy: 

 𝒖𝟐 + 𝒗𝟐 + 𝝎𝟐 + 𝟐𝒚 − 𝟐𝒍 = 𝟎 (5) 
 

Initial conditions of motion: 

 0 0 0 00 ( ) 0 ( ) 0 ( ) 0x y         (6) 
 

Final position: 

 1 1 1 1 1 1 1? ( ) ( ) ( )x x y y          (7) 
 

Brachistochronic motion consists of determining the optimal controls: 

 ( ) ( ) ( )u u v v        (8) 

 

Functional being minimized in this problem: 

 

1

1

0

J d



    (9) 

 

 



 

Pontryagin’s function  for the case of time minimization: 

                     𝑯 = −𝟏 + 𝝀𝒙𝒖 + 𝝀𝒚𝒗 + 𝝀𝝋𝝎 − 𝝁(𝒖𝟐 + 𝒗𝟐 + 𝝎𝟐 + 𝟐𝒚 − 𝟐𝒍) (10) 

 
 𝛍 is the multiplier corresponding to the constraint of mechanical energy (5) 

and 𝛌𝐱 , 𝛌𝐲 , 𝛌𝛗 are the co-state variables.  

 
The co-state system of differential equations: 

 𝝀𝒙
′ = 𝟎      𝝀𝒚

′ = 𝟐𝝁      𝝀𝝋
′ = 𝟎 (11) 

 
Optimality conditions: 

 0, 0, 0
H H H

u v 

  
  

  
 (12) 

 
Optimal controls: 

 

𝒖 =
𝝀𝒙

𝟐𝝁

  𝒗 =
𝝀𝒚

𝟐𝝁

𝝎 =
𝝀𝝋

𝟐𝝁

 (13) 



 

Multiplier 𝝁 , is defined from conditions: 

 ( ) 0H    (14) 

 𝝁(𝝉) =
𝟏

𝟒(𝒍−𝒚(𝝉))
> 𝟎 (15) 

 
Second-order conditions: 

 
𝝏𝟐𝑯

𝝏𝒖𝟐 = −𝟐𝝁 < 𝟎,      
𝝏𝟐𝑯

𝝏𝒗𝟐 = −𝟐𝝁 < 𝟎,      
𝝏𝟐𝑯

𝝏𝝎𝟐 = −𝟐𝝁 < 𝟎 (16) 

 
Optimal controls: 

 

 

𝒖 = 𝟐(𝒍 − 𝒚)𝝀𝒙

𝒗 = 𝟐(𝒍 − 𝒚)𝝀𝒚

𝝎 = 𝟐(𝒍 − 𝒚)𝝀𝝋

 (17) 

 
 
 
 
 



 

 
Differential equations of TPBVP: 

 

 

2( ) 0

1
2( )

2( )

2( ) 0

x x

y y

x l y

y l y
l y

l y  

 

 

  

   

   


   
 (18) 

 
General solutions in the analytical form: 

 

 

𝒚 = 𝒍 −
𝟏+𝒄𝒐𝒔(𝒑𝝉+𝜶)

𝒑𝟐

𝒙 =
𝟐𝝀𝒙

𝒑𝟐 (𝝉 +
𝟏

𝒑
𝒔𝒊𝒏(𝒑𝝉 + 𝜶)) + 𝑪𝟏

𝝋 =
𝟐𝝀𝝋

𝒑𝟐 (𝝉 +
𝟏

𝒑
𝒔𝒊𝒏(𝒑𝝉 + 𝜶)) + 𝑪𝟐

 (19) 

 

where (𝒑, 𝜶, 𝝀𝒙, 𝝀𝝋, 𝑪𝟏, 𝑪𝟐) are determined together with unknown moment 𝝉𝟏 from 

(5), (6) and (7).  
 



 

Non-linear ordinary equations, whose solution gives values 𝒑, 𝜶, 𝝉𝟏: 
 

𝟎 = 𝒍 −
𝟏 + 𝒄𝒐𝒔(𝜶)

𝒑𝟐
 

𝒚𝟏 = 𝒍 −
𝟏 + 𝒄𝒐𝒔(𝒑𝝉𝟏 + 𝜶)

𝒑𝟐
 

 

2(
𝒙𝟏𝒑𝟐

𝟐(𝝉𝟏 +
𝟏

𝒑
𝒔𝒊𝒏(𝒑𝝉𝟏 +𝜶)−

𝟏

𝒑
𝒔𝒊𝒏(𝜶))

)

𝟐

+ (
𝒑 𝒔𝒊𝒏(𝒑𝝉𝟏 +𝜶)

𝟐(𝟏 +𝒄𝒐𝒔(𝒑𝝉𝟏 +𝜶)
)

𝟐

=
𝒑𝟐

𝟐(𝟏 +𝒄𝒐𝒔(𝒑𝝉𝟏 +𝜶)
                      

(20)                                                                                                                                      
 

Global minimum time 𝝉𝟏 should be sought among their multiple solutions.  
Limits of all possible solutions: 

 

                    𝟎 ≤ 𝜶 < 𝟐𝝅,      − √
𝟐

𝒍
≤ 𝒑 ≤ √

𝟐

𝒍
,          𝟎 ≤ 𝝉𝟏                                         (21)   

                                                                     
 



 

Parameters of the task: 

 𝒍 = 𝟐,   𝒙𝟏 = −𝝋𝟏 =
𝝅+𝟐

𝟐√𝟐
,   𝒚𝟏 = 𝟏 (22) 

Three surfaces of different colors, each of which corresponds to the fulfillment of 
one of the equations (20). 

 
 

Analytical solutions of the corresponding TPBVP represents global minimum time: 

 

𝒑 = ±𝟏,  𝝉𝟏 =
𝝅

𝟐
, 𝜶 = 𝟎,

𝒙 =
(𝝉+𝒔𝒊𝒏𝝉)

√𝟐
,      𝒚 = 𝟏 − 𝒄𝒐𝒔𝝉,      𝝋 = −

(𝝉+𝒔𝒊𝒏𝝉)

√𝟐

𝝀𝒙 =
𝟏

𝟐√𝟐
,      𝝀𝒚 =

𝒔𝒊𝒏𝝉

𝟐(𝟏+𝒄𝒐𝒔𝝉)
,      𝝀𝝋 = −

𝟏

𝟐√𝟐
,    

 (23) 



 

First two following solutions (numerical). Both variants lead to identical final 
equations of motion: 

   
                         𝒑 =    𝟎. 𝟗𝟓𝟒𝟔𝟐𝟔,  𝝉𝟏 = 𝟒. 𝟐𝟎𝟗𝟖𝟏, 𝜶 = 𝟎. 𝟔𝟎𝟒𝟕𝟖𝟕,     

                      𝒑 = −𝟎. 𝟗𝟓𝟒𝟔𝟐𝟔,  𝝉𝟏 = 𝟒. 𝟐𝟎𝟗𝟖𝟏, 𝜶 = 𝟓. 𝟔𝟕𝟖𝟑𝟒𝟎,                                   (24)  

 
The possibility of some other solutions is not excluded however they would 
correspond to larger values of 𝝉𝟏 and are not of interest to this problem. 

It can be also noticed that the mass center trajectory is a deformed cycloid with the 

coefficient 
𝟏

√𝟐
. 

Analytical solutions (23) correspond to global time minimum: 

 
 



 

Local time minimum (24): 
 

 

 

 

 
 

 



 

Realization of the brachistochronic - rolling without slip of a moving centroid on a 
fixed one.  

 
Parametric equations of a fixed centroid: 

                                                                                     𝑥𝑃 = 𝑥 −
𝑦‚

𝜑‚     ,   𝑦𝑃 = 𝑦 +
𝑥‚

𝜑‚                                           (25) 

and moving centroid (in the moving coordinate system): 
 

                                  𝑥𝑃̅̅ ̅ =
(𝑥‚𝑠𝑖𝑛𝜑−𝑦‚𝑐𝑜𝑠𝜑)

𝜑‚     ,   𝑦𝑃̅̅ ̅ =
(𝑦‚𝑠𝑖𝑛𝜑+𝑥‚𝑐𝑜𝑠𝜑)

𝜑‚                                     (26) 

Mass center trajectory, fixed centroid and moving centroid at the initial position: 

 



 

Tangential and normal components of the constraint reaction must satisfy the 
Coulomb friction laws during motion (𝛍𝟎 - Coulomb coefficient of friction): 

                                                    −𝝁𝟎 ≤ 𝝁 =
𝑭𝒕

𝑭𝒏
≤ 𝝁𝟎                                                                   (27) 

 

Dimensionless velocity 𝐯𝐏 of contact point P and vector 𝐯𝐏   
∗ normal to it: 

               𝒗𝑷𝒙 = 𝒙𝑷
,    ,     𝒗𝑷𝒚 = 𝒚𝑷

,
     ,     𝒗𝑷𝒙

∗ = −𝒚𝑷
,     ,        𝒗𝑷𝒚

∗ = 𝒙𝑷
,

                             (28) 

The law of motion of the center of mass: 

                                𝑢′ = 𝐹𝑛𝑥 + 𝐹𝑡𝑥   ,      𝑣′ = 𝐹𝑛𝑦 + 𝐹𝑡𝑦 − 1                                                  (29) 

 
 



 

Components of the constraint reaction at point P: 

                              𝐹𝑡 =
𝑢′𝑣𝑃𝑥+ (1+𝑣′) 𝑣𝑃𝑦

𝑣𝑃
       𝐹𝑛 =

𝑢′𝑣𝑃𝑥
∗ + (1+𝑣′)𝑣𝑃𝑦

∗

𝑣𝑃
                                        (30) 

 

Coefficient of friction: 

                                                         µ =
𝑢′𝑣𝑃𝑥+ (1+𝑣′) 𝑣𝑃𝑦

𝑢′𝑣𝑃𝑥
∗ + (1+𝑣′)𝑣𝑃𝑦

∗                                                              (31) 

 
which, can be obtained in the analytical form: 

                                                  µ =
(−𝟏+𝟒𝐜𝐨𝐬𝛕+𝐜𝐨𝐬𝟐𝛕 )𝐭𝐠

𝛕

𝟐
       

𝟒√𝟐(𝟐+𝐜𝐨𝐬𝛕)
                                                          (32) 

 

 



 

 

Tangential component of the constraint reaction changes direction by 𝛕 = 𝟏. 𝟏𝟒𝟑𝟕𝟐  
By absolute value, the highest necessary Coulomb coefficient is at the end of motion 

and amounts to 𝛍∗ = 𝟎. 𝟏𝟕𝟔𝟕𝟕𝟕. 
 

Such method of realizing is possible if the surfaces are real rough surfaces with the 
coefficient  𝛍𝟎 > 𝛍∗. 

 

If the Coulomb coefficient of sliding friction were lower than mentioned limit, the 
problem of brachistochronic motion would have to be formulated in a more complex 

form.  
 

In that case, 𝐮, 𝐯, 𝛚 would become the quantities of state, relation (5) would join the 
initial conditions (6): 

 

                                                𝒖(𝟎)𝟐 + 𝒗(𝟎)𝟐 + 𝝎(𝟎)𝟐 + 𝟐𝒚(𝟎) − 𝟐𝒍 = 𝟎                     (33) 

 
  
 
 



 

 
In the equations of state, apart from kinematic equations (4), dynamic equations 

would have to be incorporated too (the controls would be 𝐮𝐱, 𝐮𝐲, 𝐮𝛗 ) : 

 

                                                        

𝒖′ = 𝒖𝒙

𝒗′ = 𝒖𝒚

𝝎′ = 𝒖𝝋

                                                                                (34) 

 

 
Based on relation (5), the restriction is imposed on control in the form of equality: 

 𝒖𝒖𝒙 + 𝒗𝒖𝒚 + 𝝎𝒖𝝋 + 𝒗 = 𝟎.                                              (35) 

 

The restriction (27) that follows from Coulomb’s law of friction: 

               −𝝁𝟎  ≤
𝒖𝒙(𝒖 𝝎𝟐−𝒖𝒚𝝎+𝒖𝝋𝒗)+ (𝟏+𝒖𝒚)(𝒗 𝝎𝟐+𝒖𝒙𝝎−𝒖𝝋𝒖)

−𝒖𝒙(𝒗 𝝎𝟐+𝒖𝒙𝝎−𝒖𝝋𝒖)+ (𝟏+𝒖𝒚)(𝒖 𝝎𝟐−𝒖𝒚𝝎+𝒖𝝋𝒗)
 ≤ 𝝁𝟎                                           (36) 

 

 
Restrictions make the problem of solving optimal control considerably more 

complex. 
 



 

Conclusions 
 

 The simplification of the optimal control task is also the originality of our work. 
 A special contribution represents the analytical solution. 
 The mass center trajectory is a deformed cycloid. 
 It is shown that in the concrete case, the obtained solution represents the global 

minimum time.  
 The manner of realizing the brachistochronic planar motion by rolling of the 

centroids cannot be found in other authors. 
 In the case of perfectly rough surfaces, the solutions obtained based on kinematic 

equations represent at the same time the brachistochronic motions of.  
 Also, in the case of real rough surfaces, when the maximum necessary coefficient   

𝝁  during the entire motion  is smaller than the Coulomb friction coefficient 𝝁𝟎. 
 When this is not fulfilled, a more complex problem of optimal control has to be 

formulated, which will be further research subject by the authors of this paper. 
 

 


