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1 Generalized Holographic dark energy

The holographic principle originates from black hole thermodynamics and
string theory and establishes a connection of the infrared cutoff of a quan-
tum field theory, which is related to the vacuum energy, with the largest
distance of this theory. Useful: cosmology! Holographic DE. Inflationary
holography.

Moreover, the holographic principle is able to unify the early inflationary
scenario with the late dark energy era in a covariant formalism .

HDE density is proportional to the inverse squared of the holographic
cut-off (LIR) which is usually assumed to be same as the particle horizon
(Lp) or the future horizon (Lf). However the fundamental form of the
LIR is still a debatable topic in this context. Along this line, it deserves
mentioning that the most generalized cut-off has been proposed in Nojiri-
Odintsov,GRG38(2006)1285, where in particular, the cut-off is considered to
depend upon LIR = LIR(Lp, L̇p, L̈p, · · · , Lf , L̇f , · · · , a), which in turn leads to
the generalized version of HDE (known as “generalized HDE”). Question:

� Does there exist suitable form(s) of LIR such that various dark energy
models (including the entropic DE models) can be thought to be equiv-
alent to the generalized HDE? If so, then what will be the equivalent
form(s) of LIR for the respective DE models?

*odintsov@ieec.uab.es
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In this talk based partly on Nojiri-Odintsov-Paul, Symmetry 13(2021)
6, we intend to address the above questions. Several entropic DE models,
like - the Tsallis entropic DE, the Rényi entropic DE and the Sharma-Mittal
entropic DE respectively. Besides the entropic DE models, the Quintessence
and the Ricci-DE models will also take part in the present analysis. Interest-
ingly, we will show that all such entropic DE, Quintessence and the Ricci-DE
models are indeed equivalent with the generalized HDE, with suitable forms
of the corresponding cut-offs.

Thermodynamics of Space-Time and Applica-

tion to Cosmology

The entropy of the black hole is proportional to the area A of the horizon

S =
A

4G
, A = 4πr2H , (1)

which is called as the Bekenstein-Hawking entropy, rH is the horizon radius.
FRW equations can be also regarded as the first law of thermodynamics
when we consider the Bekenstein-Hawking entropy by using the cosmological
apparent horizon as a realization of the thermodynamics of space-time.

In case that, however, there are long range forces like the electro-magnetic
one or gravitational one, we know that the systems are non-additive systems
and the standard Boltzmann-Gibbs additive entropy should not be applied
and we should generalize the entropy to the non-extensive Tsallis entropy.
If we apply the Tsallis entropy to the black hole, instead of the Bekenstein-
Hawking entropy, one finds ,

ST =
A0

4G

(
A

A0

)δ

. (2)

In the above expression, A0 is a constant and δ is the new parameter that
quantifies the non-extensivity. Then if we apply the Tsallis entropy by using
the apparent horizon to the cosmology, the FRW equations should be modi-
fied and the modification can be regarded as the contribution from the dark
energy.

In information theory, the Rényi entropy is often used as the measure of
the entanglement. If we apply the Rényi entropy to the black hole, one finds

SR =
A0

Gδ
ln

(
1 +

δ

4

(
A

A0

))
. (3)
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The Rényi entropy has been also used to explain the dark energy.
Here it may be mentioned that both the Tsallis and Rényi entropy ex-

pressions belong from one-parametric entropy family; there is also a two-
parametric generalized entropy which is called the Sharma-Mittal entropy
(SSM) and is written as ,

SSM =
A0

Gα

{(
1 +

δ

4

(
A

A0

))α
δ

− 1

}
, (4)

where A0 is a constant, α and δ are two independent parameters.

Dark Energy corresponding to Tsallis, Rényi,

and Sharma-Mittal entropies

We assume the Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time
with flat spacial part, whose metric is given by

ds2 = −dt2 + a2(t)
∑

i=1,2,3

(
dxi
)2

. (5)

If we define the Hubble rateH byH = ȧ
a
, the radius rH of the cosmological

horizon is given by

rH =
1

H
. (6)

Then the entropy in the region inside the cosmological horizon could be given
by the Bekenstein-Hawking relation in (1). On the other hand, the flux of
the energy E or the increase of the heat Q in the region is given by

dQ = −dE = −4π

3
r3H ρ̇dt = − 4π

3H3
ρ̇dt =

4π

H2
(ρ+ p) dt , (7)

where we use the conservation law: 0 = ρ̇ + 3H (ρ+ p). Then by using the
Hawking temperature

T =
1

2πrH
=

H

2π
, (8)

and the first law of thermodynamics TdS = dQ, one obtains Ḣ =
−4πG (ρ+ p) and by integrating the expression , one obtains the first FLRW
equation,

H2 =
8πG

3
ρ+

Λ

3
. (9)

Here the cosmological constant Λ appears as a constant of the integration.
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Instead of the Bekenstein-Hawking entropy (1), we may use the non-
extensive, the Tsallis entropy in (2). Then by applying the first law of ther-
modynamics to the system, instead of Ḣ = −4πG (ρ+ p), one gets

δ

(
H2

H2
1

)1−δ

Ḣ = −4πG (ρ+ p) , (10)

on integrating which, one gets,

δ

2− δ
H2

1

(
H2

H2
1

)2−δ

=
8πG

3
ρ+

Λ

3
. (11)

Here a constant H1 is defined by A0 ≡ 4π
H2

1
. Then if we define the energy

density ρT and the pressure pT by

ρT =
3

8πG

(
H2 − δ

2− δ
H2

1

(
H2

H2
1

)2−δ
)

, (12)

pT =
Ḣ

4πG

{
δ

(
H2

H2
1

)1−δ

− 1

}
− 3

8πG

(
H2 − δ

2− δ
H2

1

(
H2

H2
1

)2−δ
)

, (13)

respectively. It is evident that ρT depends on the quadratic power of the
Hubble parameter and thus is symmetric with respect to the Hubble param-
eter. With the above forms of ρT, pT, Eqs. (92) and (11) can be expressed
as

Ḣ = −4πG [(ρ+ p) + (ρT + pT)] ,

H2 =
8πG

3
(ρT + ρ) +

Λ

3
, (14)

respectively. Therefore ρT and pT represent the energy density and pressure
correspond to Tsallis entropy. Consequently the respective equation of state
(EoS) parameter for the Tsallis entropy is given by,

ωT =
pT
ρT

= −1 + 2

(
Ḣ

H2

)
δ
(

H2

H2
1

)1−δ

− 1

1− δ
2−δ

(
H2

H2
1

)1−δ

 (15)

It may be checked that the above expression of ωT leads to the conservation
equation for the Tsallis entropic energy density, i.e

ρ̇T + 3HρT (1 + ωT) = 0 . (16)

4



In regard to the Rényi entropy (3), the first law of thermodynamics gives,

− H3Ḣ

H2 + δ
4
H2

1

= −4πG

3
ρ̇ , (17)

from which, we obtain

H2 =
8πG

3
ρ+

Λ

3
+

δ

4
H2

1 ln

(
H2

H2
1

+
δ

4

)
. (18)

Here the cosmological constant Λ appears as a constant of the integration
again. At this stage we may define the corresponding energy density and the
pressure in the following form

ρR =
3δ

32G
H2

1 ln

(
H2

H2
1

+
δ

4

)
, (19)

pR = − Ḣ

4πG

 1

1 + 4
δ

(
H2

H2
1

)
− 3δ

32G
H2

1 ln

(
H2

H2
1

+
δ

4

)
. (20)

Due to the above expressions of ρR and pR, Eqs.(17) and (18) become
similar to the usual Friedmann equations where the total energy density and
total pressure are given by ρeff = ρ+ρR and peff = p+ pR. Consequently, the
EoS parameter corresponds to the Rényi entropy comes with the following
form,

ωR =
pR
ρR

= −1− 8

3πδ

(
Ḣ

H2
1

) 1

ln
(

H2

H2
1
+ δ

4

) [
1 + 4

δ

(
H2

H2
1

)]
 . (21)

It may be mentioned that the above expression of ωR obeys the conservation
equation for the Rényi entropic energy density. The Rényi entropic energy
density (ρR) and the pressure (pR) can provide suitable description for the
current accelerated universe and thus leads to a dark energy model.

In case of the Sharma-Mittal entropy, the first law of thermodynamics
leads to the following evolution of the cosmic Hubble parameter,(

1 +
δH2

1

4H2

)α
δ
−1

Ḣ = −4πG (ρ+ p) , (22)

integrating which, we obtain,

H2
1

( (
δ
4

)α
δ
−1

2− α/δ

)(
H2

H2
1

)2−α
δ

2F1

[
1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ

(
H2

H2
1

)]
=

8πG

3
ρ+

Λ

3
,(23)
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where Λ is the constant of integration, 2F1 is the hypergeometric function,
and to get the above expression, we use the conservation equation of the
matter components. Moreover, the constant H1 is related to A0 by A0 =

4π
H2

1
.

Now if we define an energy density (ρSM) and a pressure (pSM) like,

ρSM =
3

8πG

{
H2 −H2

1

((
δ
4

)α
δ
−1

2− α
δ

)(
H2

H2
1

)2−α
δ

2F1

[
1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ

(
H2

H2
1

)]}
,(24)

pSM =
Ḣ

4πG

{(
1 +

δH2
1

4H2

)α
δ
−1

− 1

}
− ρSM , (25)

respectively, then Eqs. (22) and (23) can be equivalently expressed as,

Ḣ = −4πG [(ρ+ p) + (ρSM + pSM)] ,

H2 =
8πG

3
(ρSM + ρ) +

Λ

3
. (26)

Thus we may argue that ρSM and pSM are the energy density and the pres-
sure coming from the cosmological description of the Sharma-Mittal entropy.
Furthermore ρSM and pSM are connected by the respective EoS, as given by

ωSM = −1 +

(
Ḣ

3H2

)
(
1 +

δH2
1

4H2

)α
δ
−1

− 1

1−
(
( δ
4)

α
δ
−1

2−α
δ

)(
H2

1

H2

)α
δ
−1

2F1

[
1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ

(
H2

H2
1

)]
 ,(27)

where we use Eqs.(24) and (25). The above form of ωSM immediately confirms
the conservation equation for the Sharma-Mittal entropic energy density.

Generalized Holographic Energy

In the holographic principle, the holographic energy density is proportional
to the inverse squared infrared cutoff LIR, which could be related with the
causality given by the cosmological horizon,

ρhol =
3c2

κ2L2
IR

. (28)

Here κ2 = 8πG is the gravitational constant and c is a free parameter. The
infrared cutoff LIR is usually assumed to be the particle horizon Lp or the
future event horizon Lf , which are given as,

Lp ≡ a

∫ t

0

dt

a
, Lf ≡ a

∫ ∞

t

dt

a
. (29)
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Differentiating both sides of the above expressions lead to the Hubble pa-
rameter in terms of Lp, L̇p or in terms of Lf , L̇f as,

H
(
Lp, L̇p

)
=

L̇p

Lp

− 1

Lp

, H(Lf , L̇f) =
L̇f

Lf

+
1

Lf

. (30)

a general form of the cutoff was proposed by Nojiri-Odintsov,

LIR = LIR

(
Lp, L̇p, L̈p, · · · , Lf , L̇f , · · · , a

)
. (31)

Actually, the other dependency of LIR, particularly on the Hubble parameter,
Ricci scalar and their derivatives, can be transformed to either Lp and their
derivatives or Lf and their derivatives via Eq.(86). The above cutoff could
be chosen to be equivalent to a general covariant gravity model,

S =

∫
d4
√
−gF

(
R,RµνR

µν , RµνρσR
µνρσ,□R,□−1R,∇µR∇µR, · · ·

)
. (32)

The comparison of Eqs. (12) and (83) lead to the argument that the Tsal-
lis entropic dark energy belongs to the generalized holographic dark energy
family, where the corresponding infrared cutoff LT is given by,

3c2

κ2L2
T

=
3

8πG

( L̇p

Lp

− 1

Lp

)2

− δ

2− δ
H2

1


(

L̇p

Lp
− 1

Lp

)2
H2

1


2−δ , (33)

in terms of Lp and its derivatives. Moreover, LT in terms of the future
horizon and its derivatives comes by the following way,

3c2

κ2L2
T

=
3

8πG

( L̇f

Lf

+
1

Lf

)2

− δ

2− δ
H2

1


(

L̇f

Lf
+ 1

Lf

)2
H2

1


2−δ . (34)

Here we would like to determine the EoS parameter of the holographic energy
density corresponds to the cut-off LT, in particular of ρhol = 3c2/ (κ2L2

T). In
this regard, the conservation equation of ρhol immediately yields the respec-
tive EoS parameter (symbolized by Ω

(T )
hol ) as,

Ω
(T )
hol = −1−

(
2

3HLT

)
dLT

dt
, (35)

where LT is obtained in Eq.(33) (or Eq.(34)) and the superscript ’T’ in the
above expression denotes the EoS parameter corresponds to the holographic
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cut-off LT. Due to Eq.(86), the above form of Ω
(T )
hol is equivalent to the

EoS of the Tsallis entropic energy density presented in Eq.(15), i.e Ω
(T )
hol ≡

ωT. Such equivalence, along with the fact that the Tsallis entropic energy
density provides a viable dark energy model, lead to the argument that the
holographic energy density coming from the cut-off LT is also able to produce
a viable dark energy epoch at our current universe.

Similarly, by comparing (95) and (83), the infrared cutoff LR correspond-
ing to the Rényi entropy is given by

3c2

κ2L2
R

=
3δ

32G
H2

1 ln

 1

H2
1

(
L̇p

Lp

− 1

Lp

)2

+
δ

4

 =
3δ

32G
H2

1 ln

 1

H2
1

(
L̇f

Lf

+
1

Lf

)2

+
δ

4

 ,

(36)
where, once again, we use Eq. (86). The first expression of Eq. (36) gives
the LR in terms of Lp and its derivatives, while the second one represents
the same in terms of Lf and its derivatives. Once again, the conservation
equation of the holographic energy density ρhol = 3c2/ (κ2L2

R) leads to the

corresponding EoS parameter (Ω
(R)
hol ) as,

Ω
(R)
hol = −1−

(
2

3HLR

)
dLR

dt
, (37)

where LR is given in Eq.(36). Thereby, since the Rényi entropic energy
density suitably describes the current acceleration of our universe, we may
argue that the holographic energy density coming from LR is able to produce
the late time cosmic acceleration.

Finally Eqs. (24) and (83) clearly argue that the Sharma-Mittal entropic
dark energy can also be thought as one of the candidates of the generalized
dark energy family, where the corresponding cut-off (LSM) is given by,

3c2

κ2L2
SM

=
3

8πG


(
L̇p

Lp

− 1

Lp

)2

−H2
1

( (
δ
4

)α
δ
−1

2− α/δ

)
(

L̇p

Lp
− 1

Lp

)2
H2

1


2−α

δ

×2F1

1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ


(

L̇p

Lp
− 1

Lp

)2
H2

1



 ,

(38)

in terms of the particle horizon and its derivatives. Similarly, the LSM in
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terms of the future horizon and its derivatives is given by,

3c2

κ2L2
SM

=
3

8πG


(
L̇f

Lf

+
1

Lf

)2

−H2
1

((
δ
4

)α
δ
−1

2− α
δ

)
(

L̇f

Lf
+ 1

Lf

)2
H2

1


2−α

δ

×2F1

1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ


(

L̇f

Lf
+ 1

Lf

)2
H2

1



 .

(39)

Furthermore using the conservation relation of ρhol = 3c2/ (κ2L2
SM), we de-

termine the EoS parameter (Ω
(SM)
hol ) corresponds to the holographic energy

density coming from the cut-off LSM as,

Ω
(SM)
hol = −1−

(
2

3HLSM

)
dLSM

dt
, (40)

where LSM is given in Eq.(38) (or in Eq.(39)). In effect of Eq.(86), it is evident

that the above form of Ω
(SM)
hol is equivalent to the EoS of the Sharma-Mittal

entropic energy density of Eq.(27), i.e Ω
(SM)
hol = ωSM. Due to this equivalence,

we may argue that the holographic energy density ρhol = 3c2/ (κ2L2
SM) can

produce the late time acceleration of our universe.
Therefore the dark energy models coming from the Tsallis entropy, the

Rényi entropy and the Sharma-Mittal entropy can be thought as different
candidates of the generalized holographic dark energy family, where the re-
spective infrared cutoffs are given by Eq. (33) to Eq. (39) respectively.

Quintessence dark energy

Scalar field dark energy models! So far, a wide amount of scalar field dark
energy models have been proposed, these include Quintessence, Phantoms,
K-essence, Tachyon, Dilatonic dark energy etc.

In this section, we consider the Quintessence dark energy (QDE) model
and show that QDE is equivalent to the generalized holographic dark energy

model where LIR = LIR

(
Lp, L̇p, L̈p, Lf , L̇f , L̈f

)
. The QDE action is given by,

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (41)
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where ϕ is the Quintessence scalar field and V (ϕ) is its potential. The
Quintessence potential has the following form,

V (ϕ) = V0 exp

[
−

√
16πG

p
ϕ

]
, (42)

with V0 and p are constants. The Quintessence model with the above ex-
ponential potential has been extensively studied and it was shown that the
potential of Eq.(42) leads to a viable dark energy model in respect to SNIa,
BAO and H(z) observations. However the most stringent constraints on the
dark energy EoS parameter (ωQ) comes from the BAO observations, in par-
ticular −1 < ωQ < −0.85.

The FLRW equations correspond to the action (41) are,

H2 =
8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
,

Ḣ =− 4πGϕ̇2 , (43)

The first FLRW equation immediately leads to the Quintessence energy den-
sity as,

ρQ =
1

2
ϕ̇2 + V (ϕ) = − Ḣ

8πG
+ V (ϕ) , (44)

where in the second line, we use Ḣ = −4πGϕ̇2. The exponential form of the
Quintessence potential (see Eq. (42)) allows the following solutions of the
Hubble parameter and the scalar field as,

H =
p

t
and ϕ(t) = 2

√
p

16πG
ln

(
t

t0

)
, (45)

respectively. Here V0, p, and t0 are related by the following constraint equa-
tion,

3p− 1 = V0t
2
0

(
8πG

p

)
. (46)

Furthermore the evolution of the Hubble parameter clearly indicates that in
order to get an accelerating expansion of the universe, the parameter p is
constrained to be p > 1. By using Eqs. (42) and (45), we can express the
Quintessence potential in terms of the Hubble parameter as follows,

V (ϕ) =

(
3− 1

p

)
H2

8πG
. (47)
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Plugging back the above expression into Eq. (44), we get ρQ in terms of H
and Ḣ as,

ρQ =
1

8πG

{(
3− 1

p

)
H2 − Ḣ

}
. (48)

Furthermore the pressure in the present context is given by,

pQ = − Ḣ

8πG
− V (ϕ) = − 1

8πG

{(
3− 1

p

)
H2 + Ḣ

}
, (49)

which, along with Eq.(48) immediately leads to the corresponding EoS pa-
rameter as,

ωQ = −

{(
3− 1

p

)
H2 + Ḣ

}
{(

3− 1
p

)
H2 − Ḣ

} . (50)

Having set the stage, now we are in a position to show the equivalence be-
tween QDE and generalized holographic dark energy model. The comparison
of Eqs. (48) and (83) immediately lead to the equivalent holographic cut-off
(LQ) corresponds to the QDE as follows,

3c2

κ2L2
Q

=
1

8πG


(
3− 1

p

)(
L̇p

Lp

− 1

Lp

)2

−

(
L̈p

Lp

−
L̇2
p

L2
p

+
L̇p

L2
p

)
=

1

8πG


(
3− 1

p

)(
L̇f

Lf

+
1

Lf

)2

−

(
L̈f

Lf

− L̇2
f

L2
f

− L̇f

L2
f

) . (51)

Thereby the QDE can be equivalently mapped to the generalized holographic
dark energy model where the cut-off is the function of Lp, L̇p, L̈p or the

function of Lf , L̇f , L̈f . Furthermore, the EoS parameter (Ω
(Q)
hol ) corresponds

to the hologrphic cut-off LQ is given by,

Ω
(Q)
hol = −1−

(
2

3HLQ

)
dLQ

dt
, (52)

where LQ is shown above. Clearly, in accordance of Eq.(86), Ω
(Q)
hol becomes

equivalent to the ωQ of Eq.(50). Such equivalence leads to the fact that
similar to the Quintessence energy density, the holographic energy density
coming from the cut-off LQ also provides a good dark energy model of our
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universe.

The same approach to show that Ricci DE is just one representative of
generalised HDE! Using same technique with holographic inflation we can
propose unified holographic inflation-dark energy evolution. It was devel-
oped in detail for number of scenarios in [Nojiri-Odintsov-Oikonomou-Paul,
PRD102(2020)023540].

Conclusion: any Dark Energy model maybe shown to be representative of
generalised holographic DE. Any specific inflationary model maybe mapped
with generalised holographic inflation too.

2 How fundamental is entropy: on the way

to unique universal entropy construct

Nojiri-Odintsov-Faraoni, PRD 105(2022)4.
Classical thermodynamics: entropy is as a unique, universal, and funda-

mental quantity playing one of the most important roles in physics. Not so!
Not fundamental, not unique. It depends on physical system under consid-
eration.

Variety of entropies exists in many classical and quantum systems. Still
more maybe expected!!!

In the 1970s: black holes are not cold objects but have entropy and tem-
perature. Bekenstein’s association of entropy with black holes, proportional
to the black hole horizon area , remained odd and inconclusive until Hawk-
ing discovered that the Schwarzschild black hole (and, by extension, all black
holes) radiate quanta of quantum fields living on that spacetime, emitting
a blackbody spectrum at a temperature TH = 1

8πGM
, where M is the black

hole mass. The discovery of the Hawking temperature made sense of Beken-
stein’s black hole entropy and paved the way for the development of black
hole thermodynamics.

One puzzling feature of the Bekenstein-Hawking entropy was, from its
beginnings, that it is not proportional to the black hole volume, as familiar
in classical thermodynamics, but rather it is proportional to the black hole
horizon area. In classical thermodynamics, the entropy of a system is propor-
tional to its mass and its volume and is an extensive and additive quantity;
the fundamental reason why black hole entropy is instead non-extensive re-
mains shrouded in mystery. Given the elusive nature of the origin of this
entropy, it is not surprising that recent literature contemplates alternatives,
replacing the Bekenstein-Hawking entropy with other constructs based on
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non-extensive statistics, including the Rényi and Tsallis non-extensive en-
tropies (a better terminology would “non-additive” entropies). Since entropy,
temperature, internal energy, and heat transferred are related by the first law
of thermodynamics, changing the notion of entropy entails changes in these
other quantities, usually jeopardizing the first law.

Horizons are not a prerogative of black holes but appear also in cosmol-
ogy, hence horizon thermodynamics was extended to cosmological horizons.
Many scenarios of dark energy and modified gravity have been proposed
and are being tested and/or constrained as newer cosmological observations
become available. Among the many scenarios advanced in the cosmology lit-
erature, the holographic dark energy proposal is directly related to entropy.
Therefore, replacing the notion of entropy used in physics has a direct impact
on this scenario.

Possible generalizations of known entropies

The Bekenstein-Hawking entropy is

S =
A

4G
, (53)

where A ≡ 4πrh
2 is the area of the horizon and rh is the horizon radius

(using the areal radius as the radial coordinate). This proposal, however, is
not unique. Indeed, depending on the system under consideration, different
entropies may be introduced. Let us recall some of the entropy concepts
proposed thus far.

� The Tsallis entropy appears in the study of non-extensive statistics for
systems with long range interactions, in which the partition function
diverges and the standard Boltzmann-Gibbs entropy becomes inade-
quate; it is

ST =
A0

4G

(
A

A0

)δ

, (54)

where A0 is a constant with the dimensions of an area and δ is a dimen-
sionless parameter that quantifies the non-extensivity. The standard
Bekenstein-Hawking entropy (53) is recovered for δ = 1.

� The Rényi entropy is defined as

SR =
1

α
ln (1 + αS) (55)
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where S is identified with the Bekenstein-Hawking entropy (53), and
contains a parameter α. The Rényi entropy was proposed as an index
specifying the amount of information and, originally, had no relation
with the statistics of physical systems.

� The Sharma-Mittal entropy is

SSM =
1

R

[
(1 + δ ST)

R/δ − 1
]

(56)

where ST is the Tsallis entropy, while R and δ are free phenomenological
parameters to be determined by the best-fitting of experimental data.
The Sharma-Mittal entropy can be seen as a combination of the Rényi
and Tsallis entropies.

� The Barrow entropy is

SB =

(
A

APl

)1+∆/2

; (57)

here A is the usual black hole horizon area and APl ≡ 4G is the Planck
area. Formally, the Barrow entropy resembles the Tsallis non-extensive
entropy but the physical principles underlying its introduction are rad-
ically different. The Barrow entropy was proposed as a toy model
for the possible effects of quantum gravitational spacetime foam. The
quantum-gravitational deformation is quantified by the new exponent
∆. The Barrow entropy reduces to the standard Bekenstein-Hawking
entropy in the limit ∆ → 0, while ∆ = 1 corresponds to maximal
deformation.

� The Kaniadakis entropy

SK =
1

K
sinh (KS) , (58)

reproduces the Bekenstein-Hawking entropy in the limit K → 0 of its
parameter K. It can be regarded as a generalization of the Boltzmann-
Gibbs entropy arising in relativistic statistical systems.

� Non-extensive statistical mechanics in Loop Quantum Gravity gives
the entropy

Sq =
1

1− q

[
e(1−q)Λ(γ0)S − 1

]
, (59)
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where the entropic index q quantifies how the probability of frequent
events is enhanced relatively to infrequent ones,

Λ(γ0) =
ln 2√
3πγ0

, (60)

and γ0 is the Barbero-Immirzi parameter, which is usually assumed
to take one of the two values ln 2

π
√
3
or ln 3

2π
√
2
, depending on the gauge

group used in Loop Quantum Gravity. However, γ0 is a free parameter
in scale-invariant gravity. With the first choice of γ0, Λ(γ0) becomes
unity and the entropy (59) reduces to the Bekenstein-Hawking one in
the limit q → 1, which corresponds to extensive statistical mechanics.

The above entropies share the following properties:

1. Generalized third law: All these entropies vanish when the Bekenstein-
Hawking entropy vanishes. In the third law of standard thermody-
namics for closed systems in thermodynamic equilibrium, the quan-
tity eS expresses the number of states, or the volume of these states,
and therefore the entropy S vanishes when the temperature does be-
cause the ground (vacuum) state should be unique. By contrast, the
Bekenstein-Hawking entropy S diverges when the temperature T van-
ishes and it goes to zero at infinite temperature. However, requiring any
generalized entropy to vanish when the Bekenstein-Hawking entropy S
vanishes could be a natural requirement.

2. Monotonically increasing functions: All the above entropies are mono-
tonically increasing functions of the Bekenstein-Hawking entropy S.

3. Positivity: All the above entropies are positive, as is the Bekenstein-
Hawking entropy (53). This is natural because eS corresponds to the
number of states (or to the volume of these states), which is greater
than unity.

4. Bekenstein-Hawking limit: All the above entropies reduce to the
Bekenstein-Hawking entropy (53) in an appropriate limit.

In the preceding expressions, all entropies are functions of the Bekenstein-
Hawking entropy (53). In this sense, the most general entropy SG would be
a function of the Bekenstein-Hawking entropy S,

SG = SG (S) , (61)
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subject to certain natural requirements: we require the general entropy SG

to possess the above properties.
An example of such an entropy construct containing six parameters

(α±, β±, γ±) could be

SG (α±, β±, γ±) =
1

α+ + α−

[(
1 +

α+

β+

Sγ+

)β+

−
(
1 +

α−

β−
Sγ−

)−β−
]
,

(62)

where we assume all the parameters (α±, β±, γ±) to be positive. First, we
show that the entropy SG (α±, β±, γ±) reduces to the entropies (54), (55),
(56), (57), (58), and (59) already presented for appropriate choices of the
parameter values.

� In the limit α+ = α− → 0, the choice γ+ = γ− ≡ γ gives

SG (α± → 0, β±, γ) → Sγ . (63)

If we further choose γ = δ or γ = 1 +∆/2, the Tsallis entropy (54) or
the Barrow entropy (57) are reproduced, respectively.

� The parameter choice α− = 0 yields

SG (α+, α− = 0, β±, γ+ = 1, γ−) =
1

α+

[(
1 +

α+

β+

Sγ+

)β+

− 1

]
. (64)

Then, writing α+ = R, β+ = R/δ, and γ+ = δ, one obtains the Sharma-
Mittal entropy (56).

� In Eq. (64), if we further take the limit α+ → 0 simultaneously with
β+ → 0 keeping α ≡ α+/β+ finite, and we choose γ+ = 1, we obtain

SG

(
α+ → 0, α− = 0, β+ → 0, β−, γ+ = 1, γ−;α ≡ α+

β+

finite

)
→ 1

α+

[
e
β+ ln

(
1+

α+
β+

S
)
− 1

]
≃ 1

α+

[
1 + β+ ln

(
1 +

α+

β+

S
)
− 1

]
=

β+

α+

ln

(
1 +

α+

β+

S
)

≡ 1

α
ln (1 + αS) , (65)

which reproduces the Rényi entropy (55).
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� Taking the limit β± → 0, choosing γ± = 1, and writing α± = K, the
general entropy (62) reduces to the Kaniadakis one (58),

SG (α± = K, β± → 0, γ± = 1) → 1

2K

(
eKS − e−KS) = 1

K
sinh (KS) .

(66)

� Finally, taking α− = 0 and γ+ = 1 in the generalized entropy (62), one
obtains

SG =
1

α+

[
e
β+ ln

(
1+

α+
β+

S
)
− 1

]
(67)

and the further limit β+ → +∞ in conjunction with α = 1− q yields

SG ≈ 1

1− q

[
e(1−q)S − 1

]
(68)

corresponding to Λ(γ0) = 1 in the Loop Quantum Gravity entropy (59),
and which reduces to the Bekenstein-Hawking entropy S as q → 1.

It is straightforward to check that the entropy SG (α±, β±, γ±) in Eq. (62)
satisfies the generalized third law, that is, SG (α±, β±, γ±) → 0 when S → 0.
The entropy SG (α±, β±, γ±) is a monotonically increasing function of S be-

cause both
(
1 + α+

β+
Sγ+

)β+

and −
(
1 + α−

β−
Sγ−

)−β−
are monotonically in-

creasing functions of S, given that all the parameters (α±, β±, γ±) are as-
sumed to be positive, and their sum is also monotonically increasing. Posi-
tivity is satisfied because SG (α±, β±, γ±) = 0 when S = 0 and SG (α±, β±, γ±)
is a strictly increasing function of S.

It is clear that there exists a limit of SG (α±, β±, γ±) to the Bekenstein-
Hawking entropy because SG reduces to the entropies (54), (55), (56), (57),
(58), and (59), which have the required limiting behaviour. More explicitly,
we have

lim
α±→0

SG (α±, β±, γ±) = S . (69)

We may also consider the three-parameter entropy-like quantity

SG (α, β, γ) =
1

γ

[(
1 +

α

β
S
)β

− 1

]
, (70)

where we assume again the parameters (α, β, γ) to be positive. When γ and
α coincide, the expression (70) reduces to the Sharma-Mittal entropy (56)
with ST = S, that is, δ = 1. By writing γ = (α/β)β, the limit α → ∞ yields

lim
α→∞

SG

(
α, β, γ =

(
α

β

)β
)

= Sβ . (71)
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The choices β = δ and β = 1 + ∆/2 give the Tsallis entropy (54) and the
Barrow entropy (57), respectively. If, instead, we consider the limit in which
α → 0 and β → 0 simultaneously while keeping α/β finite, as in Eq. (65), we
obtain the Rényi entropy (55) by replacing α/β with α and choosing γ = α,

SG

(
α → 0, β → 0, γ;

α

β
finite

)
→ 1

γ
ln

(
1 +

α

β
S
)

=
1

α
ln (1 + αS) . (72)

Another possibility consists of taking the limit β → ∞ in conjunction
with γ = α, which leads to the new type of expression

SG (α, β → ∞, γ) → 1

γ

(
eαS − 1

)
. (73)

It is again straightforward to check that (70) satisfies all the conditions char-
acterizing the generalized third law: monotonically increasing function of S,
positivity, and Bekenstein-Hawking limit.

To recap, we have proposed two new examples of entropy that may be
valid for the description of certain physical systems, which we have not yet
discussed. Eventually, several additional proposals for even more general en-
tropies can be conceived. However, we still lack a physical principle selecting
an entropy as unique and universal, perhaps containing many parameters
depending on various quantities.

Black hole thermodynamics with 3-parameter

generalized entropy

It is interesting to see what happens when the generalized entropy (61) is
ascribed to the prototypical black hole, given by the Schwarzschild geometry

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2

(2) , f(r) = 1− 2GM

r
, (74)

where M is the black hole mass and dΩ2
(2) = dϑ2 + sin2 ϑ dφ2 is the line

element on the unit two-sphere. The black hole event horizon is located at
the Schwarzschild radius

rH = 2GM . (75)

Studying quantum field theory on the spacetime with this horizon, Hawk-
ing discovered that the Schwarzschild black hole radiates with a blackbody
spectrum at the temperature

TH =
1

8πGM
. (76)
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As explained in general below, if we assume that the mass M coincides with
the thermodynamical energy, then the temperature obtained from the ther-
modynamical law is different from the Hawking temperature, a contradiction
for observers detecting Hawking radiation. Alternatively, if the Hawking
temperature TH is identified with the physical black hole temperature, the
obtained thermodynamical energy differs from the Schwarzschild mass M
even for the Tsallis entropy or the Rényi entropy, which seems to imply a
breakdown of energy conservation.

If the massM coincides with the thermodynamical energy E of the system
due to energy conservation, as in, in order for this system to be consistent
with the thermodynamical equation dSG = dE/T one needs to define the
generalized temperature TG as

1

TG

≡ dSG

dM
(77)

which is, in general, different from the Hawking temperature TH. For exam-
ple, in the case of the entropy (70), one has

1

TG

=
α

γ

(
1 +

α

β
S
)β−1

dS
dM

=
α

γ

(
1 +

α

β
S
)β−1

1

TH

, (78)

where

S =
A

4G
= 4πGM2 =

1

16πGTH
2 . (79)

Because α
γ

(
1 + α

β
S
)β−1

̸= 1, it is necessarily TG ̸= TH. Since the Hawking

temperature (76) is the temperature perceived by observers detecting Hawk-
ing radiation, the generalized temperature TG in (78) cannot be a physically
meaningful temperature.

In Eq. (77), assuming that the thermodynamical energy E is the black
hole massM leads to an unphysical result. As an alternative, assume that the
thermodynamical temperature T coincides with the Hawking temperature TH

instead of assuming E = M . This assumption leads to

dEG = TH dSG =
dSG

dS
dS√

16πGS
(80)

which, in the case of Eq. (70), yields

dEG =
α

γ

(
1 +

α

β
S
)β−1

dS√
16πGS
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=
α

γ
√
16πG

[
S−1/2 +

α (β − 1)

β
S1/2 +O

(
S3/2

)]
. (81)

The integration of Eq. (81) gives

EG =
α

γ
√
16πG

[
2S1/2 +

2α (β − 1)

3β
S3/2 +O

(
S5/2

)]
=

α

γ

[
M +

4πGα (β − 1)

3β
M3 +O

(
M5
)]

, (82)

where the integration constant is determined by the condition that EG = 0
when M = 0. Even when α = γ, due to the correction 4πGα(β−1)

3β
M3, the

expression (82) of the thermodynamical energy ER obtained differs from the
black hole mass M , EG ̸= E, which seems unphysical.

Holographic cosmology with generalized en-

tropy

The density of the holographic dark energy (HDE) is proportional to the
square of the inverse holographic cutoff LIR,

ρhol =
3C2

κ2LIR
2 , (83)

where C is a free parameter. The holographic cutoff LIR is usually as-
sumed to be the same as the particle horizon Lp or the future hori-
zon Lf . No compelling argument has been proposed thus far for choos-
ing this quantity, hence the most general cutoff was proposed by Nojiri-
Odintsov,2006. In this proposal, the cutoff is assumed to depend upon
LIR = LIR(Lp, L̇p, L̈p, · · · , Lf , L̇f , · · · , a), which in turn leads to the gener-
alized version of HDE known as “generalized HDE” . In the spatially flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe described by the
line element

ds2 = −dt2 + a2(t)
3∑

i=1

(
dxi
)2

(84)

with scale factor a(t) in comoving coordinates (t, x, y, z), one might speculate
that the generalized HDE originates from one of several kinds of entropies
associated with the cosmological horizon. In the FLRW spacetime (84), the
particle horizon Lp and the future event horizon Lf are defined as

Lp ≡ a(t)

∫ t

0

dt′

a(t′)
, Lf ≡ a(t)

∫ ∞

t

dt′

a(t′)
, (85)
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respectively, when these integrals converge. Differentiating both sides of
these definitions leads to the expressions of the Hubble function in terms of
Lp, L̇p or of Lf , L̇f (where an overdot denotes differentiation with respect to
the comoving time t)

H
(
Lp, L̇p

)
=

L̇p

Lp

− 1

Lp

, H(Lf , L̇f) =
L̇f

Lf

+
1

Lf

, (86)

where the Hubble rate is H ≡ ȧ/a.
As argued, e.g., the standard Einstein-Friedmann equations can be de-

rived from the Bekenstein-Hawking entropy (53). The physical radius of the
cosmological horizon in spatially flat FLRW universes is

rH =
1

H
, (87)

which tells us that the entropy inside this horizon can be given by the
Bekenstein-Hawking entropy (53) with the identification A ≡ 4πrh

2 = 4πrH
2.

Because the incremental change of the energy E, or the increase of the heat
Q, contained in this region is given by

dQ = −dE = −4π

3
r3H ρ̇ dt = − 4π

3H3
ρ̇ dt =

4π

H2
(ρ+ P ) dt (88)

(where we used the conservation law ρ̇ + 3H (ρ+ P ) = 0), by using the
Gibbons-Hawking temperature

T =
1

2πrH
=

H

2π
(89)

and the first law of thermodynamics TdS = dQ, we obtain

Ḣ = −4πG (ρ+ P ) . (90)

The integration of Eq. (90) leads to the Friedmann equation

H2 =
8πG

3
ρ+

Λ

3
, (91)

where the integration constant corresponds to the cosmological constant Λ.
It is possible to derive the black hole entropy from holography. As shown

below, if we replace the Bekenstein-Hawking entropy (53) with another en-
tropy and we apply the procedure illustrated between Eqs. (88) and (91), the
Friedmann equation (91) is modified and extra contributions, which can be
seen as holographic dark energy, arise from the non-standard entropy. For
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example, if we use the Tsallis entropy (54) instead of the Bekenstein-Hawking
entropy (53), Eq. (90) is modified to

δ

(
H

H1

)2(1−δ)

Ḣ = −4πG (ρ+ P ) , (92)

where H1
2 ≡ 4π/A0. The integration of Eq. (92) yields

H2 =
8πG

3
(ρ+ ρT) +

Λ

3
, ρT =

3

8πG

[
H2 − δ

2− δ
H2

1

(
H

H1

)2(2−δ)
]
.

(93)

If we interpret ρT as the holographic dark energy due to the holographic
infrared cutoff LIR,T, ρT = 3C2

κ2LIR,T
2 , then the holographic infrared cutoff

LIR,T can be identified with

LIR,T =
1

C

√
H2 − δ

2−δ
H2

1

(
H
H1

)2(2−δ)

=
1

C

√√√√( L̇p

Lp
− 1

Lp

)2
− δ

2−δ
H2

1

(
L̇p
Lp

− 1
Lp

H1

)2(2−δ)

=
1

C

√√√√( L̇f

Lf
+ 1

Lf

)2
− δ

2−δ
H2

1

(
L̇f
Lf

+ 1
Lf

H1

)2(2−δ)
. (94)

Equivalently, such a FLRW equation can always be rewritten in terms of
a generalised cosmological dark fluid. A similar procedure for the Rényi
entropy (55) gives

ρR =
3πα

8G2
ln

(
1 +

GH2

πα

)
. (95)

The three-parameter entropy (70) gives

ρG =
3

8πG

[
H2 − πα

Gβγ (1− β)

(
GβH2

πα

)2−β

2F1

(
1− β, 2− β, 3− β;−GβH2

πα

)]
,

(96)
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which is expressed in terms of the particle horizon Lp or the future event
horizon Lf by

ρG =
3

8πG

( L̇p

Lp

− 1

Lp

)2

− πα

Gβγ (1− β)

Gβ
(

L̇p

Lp
− 1

Lp

)2
πα


2−β

×2F1

1− β, 2− β, 3− β;−
Gβ
(

L̇p

Lp
− 1

Lp

)2
πα




=
3

8πG

( L̇f

Lf

+
1

Lf

)2

− πα

Gβγ (1− β)

Gβ
(

L̇f

Lf
+ 1

Lf

)2
πα


2−β

×2F1

1− β, 2− β, 3− β;−
Gβ
(

L̇f

Lf
+ 1

Lf

)2
πα


 , (97)

where the hypergeometric series terminates and reduces to a polynomial if
β is an integer m ≥ 1. One can define the pressure of the holographic dark
energy PG by means of the covariant conservation law

ρ̇G + 3H (ρG + PG) = 0 ; (98)

the equation of state parameter wG can then be written as

wG ≡ PG

ρG
= −1− ρ̇G

3HρG

=− 1− 2

3
Ḣ

[
H2 − πα

Gβγ (1− β)

(
GβH2

πα

)2−β

2F1

(
1− β, 2− β, 3− β;−GβH2

πα

)]−1

×

[
1− 2− β

γ (1− β)

(
GβH2

πα

)1−β

2F1

(
1− β, 2− β, 3− β;−GβH2

πα

)

+
2− β

γ (3− β)

(
GβH2

πα

)2−β

2F1

(
2− β, 3− β, 4− β;−GβH2

πα

)]
.

(99)

When the matter contribution is negligible and the cosmological constant
vanishes, the Friedmann equation reads

H2 =
8πG

3
ρG (100)
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and then Eq. (96) gives

2F1

(
1− β, 2− β, 3− β;−GβH2

πα

)
= 0 . (101)

Therefore, the zeros Zi of the hypergeometric function 2F1 (1− β, 2− β, 3− β; z)
correspond to de Sitter universes with Hubble constant H given by

Zi = −GβH2

πα
. (102)

Then, in spite of the absence of a true cosmological constant Λ, Eq. (102)
gives the effective cosmological constant

Λeff =
3παZi

Gβ
. (103)

Since H is constant (Ḣ = 0), if H is given by Eq. (102) the equation of state
parameter wG in (99) is almost −1, wG ∼ −1. If Λeff in (103) is large, this
effective cosmological constant may describe inflation. On the other hand, if
Λeff is sufficiently small, the effective cosmological constant may describe the
accelerated expansion of the present universe. If the effective cosmological
constant is slightly larger than the present dark energy, this effective constant
could potentially solve the Hubble tension problem.

Let us first consider the case in which Zi (which we now write as Z1 for

i = 1) is sufficiently small. When GβH2

πα
is small, the hypergeometric function

2F1

(
1− β, 2− β, 3− β;−GβH2

πα

)
is expanded as

2F1

(
1− β, 2− β, 3− β;−GβH2

πα

)
= 1− (1− β) (2− β)

3− β

GβH2

πα

+
(1− β) (2− β)2

4− β

(
GβH2

πα

)2

+ O

((
GβH2

πα

)3
)

. (104)

Therefore, if we neglect the terms of order O
((

GβH2

πα

)2)
in Eq. (104) when

H is small, Eqs. (104) and (101) give

Z1 = −GβH2

πα
∼ − (3− β)

(1− β) (2− β)
, (105)
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that is,

H2 ∼ (3− β) πα

(1− β) (2− β)Gβ
(106)

which becomes small when β ≲ 3 and the terms of order O
((

GβH2

πα

)2)
in Eq. (104) can be dropped. This conclusion hints at the idea that the
solution (106) could explain dark energy in the present universe. We may
assume

3− β ∼ O
(
10−2n

)
, α ∼ O

(
10−2m

)
, (107)

and then Eq. (106) gives

H2 ∼
(
10−n−m+28 eV

)2
; (108)

therefore, if n + m = 61, it is H ∼ 10−33 eV, which reproduces the present
energy scale of the dark energy. If another zero Z2 exists with absolute value
slightly smaller than Z1, the effective cosmological constant can potentially
solve the Hubble tension problem, i.e., the recent observational tension be-
tween the value of the Hubble constant inferred from small redshifts (as in
the observations of Type Ia supernova calibrated by Cepheids and that from
large redshifts inferred from the cosmic microwave background (CMB). This
problem might be solved, or at least alleviated, if there is effectively dark
energy just after the CMB was emitted. Our model admitting two zeros Z1,2

with |Z2| slightly larger than |Z1| might play the role of the effective dark
energy just after the CMB.

In general, the hypergeometric function can have several or even an infi-
nite number of zeros. If there are a root of order unity or a large and nega-
tive root Zi of the equation 2F1 (1− β, 2− β, 3− β;Zi) = 0, then Eq. (102)
can give the large Hubble rate H corresponding to the inflationary epoch.
The Hubble rate H and the effective cosmological constant Λeff are given by
Eqs. (102) and (103), respectively. If, for the sake of illustration, we retain
the first three terms in Eq. (104), the latter assumes the form

1− (1− β) (2− β)

3− β

GβH2

πα
+

(1− β) (2− β)2

4− β

(
GβH2

πα

)2

= 0 (109)

with solutions

GβH2

πα
= Z± ≡−

(1−β)(2−β)
3−β

±
√

(1−β)2(2−β)2

(3−β)2
− 4 (1−β)(2−β)2

4−β

2(1−β)(2−β)2

4−β
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=− 4− β

2 (2− β) (3− β)

1±

√
1− 4 (3− β)2

(4− β) (1− β)

 . (110)

As in Eqs. (107) and (108) we assume β ≲ 3, obtaining

Z+ = − 4− β

2 (2− β) (3− β)
, Z− = − 3− β

2 (1− β) (2− β)
(111)

(here Z− corresponds to Z1 in Eq. (105)). Therefore, if one writes α and β
as in Eq. (107) and chooses n +m = 61 as done below Eq. (108), one finds
again a Hubble constant H that reproduces the present value of the dark
energy scale. If, instead, GβH2

πα
= Z+, one finds

H2 ∼
(
10n−m+28 eV

)2
(112)

and the choice n+m = 61 gives

H2 ∼
(
10−2m+89 eV

)2
. (113)

Assuming GUT scale (∼ 1016GeV = 1025 eV) inflation H ∼ 102×25−28 eV =
1022 eV, we obtain m ∼ 33 or 34. Therefore Z+ may produce the inflationary
epoch of the early universe.

3 CONCLUSION

1. Large number of novel entropies which satisfy the properties of classical
entropy and are functions of BH entropy maybe constructed.

2. Odintsov-Paul, PLB831(2022) 137 – Minimum number of parameters
of generalised novel entropy is four.

3. The most natural and consistent entropy for BHs is Bekenstein-
Hawking entropy.

4. 5 parameters entropy function non-singular during whole universe evo-
lution maybe constructed.

5. entropic FRW eqs coming from novel entropy may describe the whole
universe history from inflation till DE!

Search for unique fundamental entropy continues!
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