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(joint work with I. Dimitrijević, B. Dragovich, and J. Stanković)
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General theory of relativity 1

� GTR or ETG assumes that Universe is four dimensional homogeneous
isotropic simple connected pseudo-Riemannian manifold M with metric
(gµν) of signature (1, 3).

� Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



General theory of relativity 1

� GTR or ETG assumes that Universe is four dimensional homogeneous
isotropic simple connected pseudo-Riemannian manifold M with metric
(gµν) of signature (1, 3).

� Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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General theory of relativity 2

� GTR is based on Einstein-Hilbert action:

S =

∫ ( R − 2Λ

16πG c4 + Lm

)√
−g d4x

where R is scalar curvature, g = det(gµν) is determinant of metric ten-
sor, Λ is cosmological constant and Lm is Lagrangian of matter.

� The variation of the action S we obtain equations of motion:

Rµν −
1
2

R gµν + Λ gµν = 8πG Tµν , c = 1 (2)

where Tµν is the energy momentum tensor, gµν is metric tensor, Rµν is
Ricci tensor and R is scalar curvature.

� The energy momentum tensor for ideal fluid (matter in cosmology) is

T = diag(−ρ g00, g11p, g22p, g33p), (3)

where ρ is energy density and p is pressure.
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



General theory of relativity 3

� Since in the cosmology equation of state is p = wρ, where w is a
constant, from the conservation law we obtain ρ = Ca−3(1+w).

� Einstein equation implies Friedmann equations

ä
a

= −4πG
3

(ρ+ 3p) +
Λ

3
,

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
.

� The great success of GRT in describing:
the precession of Merkur perihelion,
the bending of light in gravitational fields,
the gravitational redshift of light
the gravitational lensing,
and other ...
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ä
a

= −4πG
3

(ρ+ 3p) +
Λ

3
,

(
ȧ
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Motivation 4

� Great cosmological observational discoveries of 20th century:
high orbital speeds of galaxies in clusters and stars in spiral galaxies,
accelerated expansion of the Universe
showed that they could not be explained by GTR without additional
matter

� Problems related to the Big Bang singularity.

There are two natural approaches:
� Dark matter and energy

� Modification of Einstein theory of gravity, i.e. modification of its
Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Motivation 4

� Great cosmological observational discoveries of 20th century:
high orbital speeds of galaxies in clusters and stars in spiral galaxies,
accelerated expansion of the Universe
showed that they could not be explained by GTR without additional
matter

� Problems related to the Big Bang singularity.

There are two natural approaches:
� Dark matter and energy

� Modification of Einstein theory of gravity, i.e. modification of its
Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.
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Approaches to the problem 5

Dark matter and energy
� Dark matter is responsible for orbital speeds in galaxies, and dark

energy is responsible for accelerated expansion of the Universe.

� If Einstein theory of gravity can be applied to the whole Universe then
the Universe contains about 5% of ordinary matter, 27% of dark matter

and 68% of dark energy.

� It means that 95% of total matter, or energy, represents dark side of the
Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity
� The validity of General Relativity on cosmological scale is not confirmed.

� Dark matter and dark energy are not yet detected in the laboratory
experiments.

Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Approaches to the problem 5

Dark matter and energy
� Dark matter is responsible for orbital speeds in galaxies, and dark

energy is responsible for accelerated expansion of the Universe.

� If Einstein theory of gravity can be applied to the whole Universe then
the Universe contains about 5% of ordinary matter, 27% of dark matter

and 68% of dark energy.

� It means that 95% of total matter, or energy, represents dark side of the
Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity
� The validity of General Relativity on cosmological scale is not confirmed.

� Dark matter and dark energy are not yet detected in the laboratory
experiments.
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Modification of Einstein theory of gravity 6

Different approaches to modification of Einstein theory of gravity
From action

S =

∫ (R − 2Λ

16πG
+ Lm

)√
−g d4x

we have field equations

Rµν −
1
2

R gµν + Λgµν = 8πGTµν , c = 1.

where Tµν is stress-energy tensor, gµν is the metric tensor, Rµν is Ricci
tensor and R is scalar curvature.

� f (R) modified gravity

S =

∫ ( f (R)

16πG
+ Lm

)√
−g d4x
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tensor and R is scalar curvature.

� f (R) modified gravity

S =

∫ ( f (R)

16πG
+ Lm

)√
−g d4x
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Modification of Einstein theory of gravity 7

� Gauss-Bonnet modified gravity

S =

∫ (R + αG
16πG

+ Lm

)√
−g d4x , G = R2 − 4 RµνRµν + Rαβµν Rαβµν

� nonlocal modified gravity

S =

∫ (F (R,Rµν ,Rα
µβν ,�, ...)

16πG
+ Lm

)√
−g d4x

� Under nonlocal modification of gravity we understand replacement of the
scalar curvature R in the Einstein-Hilbert action by a suitable function
F (R,�), where � = ∇µ∇µ is d’Alembert operator and ∇µ denotes the
covariant derivative
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Nonlocal modified gravity 8

� Let M be a four-dimensional pseudo-Riemannian manifold with metric
(gµν) of signature (1,3). We consider a class of nonlocal gravity models
without matter, given by the following action

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

where F(�) =
∞∑

n=0

fn �n is an analytic function of �, and Λ is cosmolo-

gical constant.

� In the case of FRW metric the scalar curvature and d’Alambert operator
are given by

R =
6
(
a ä + ȧ2 + k

)
a2 , �R = −R̈ − 3 H Ṙ, H =

ȧ
a
.
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Equations of motion 9

Theorem 2 (EOM) The equations of motion for system given by S are:

G̃µν = 0, (4)

where

G̃µν =
Gµν + Λgµν

16πG
− 1

2
gµνH(R)F(�)G(R) + RµνW − KµνW +

1
2

Ωµν ,

Ωµν =
∞∑

n=1

fn
n−1∑
l=0

Sµν

(
�lH(R),�n−1−lG(R)

)
,

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

W = H′(R)F(�)G(R) + G′(R)F(�)H(R).

� Let us note that ∇µG̃µν = 0.

� EOM are invariant on the replacement of functions G and H in S.
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Equations of motion (EOM)

� If we take
G(R) = H(R) and

G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami �
operator: �G(R) = q G(R), and consequently F(�)G(R) = F(q)G(R) ,

we obtain

Gµν + Λgµν −
gµν

2
F(q)G2 + 2F(q)(Rµν − Kµν)GG′ (5)

+
1
2
F ′(q)Sµν(P,P) = 0.

� If we suppose that the manifold M is endowed with FRW metric, then we
have just two linearly independent equations: trace and 00-equation.
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Models of Nonlocal gravity 10

� Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

for the following cases:

1. H(R) = R, G(R) = R,

2. H(R) = R−1, G(R) = R,

3. H(R) = Rp, G(R) = Rq ,

4. H(R) = (R + R0)m, G(R) = (R + R0)m,

5. R = const.
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1. model: H(R) = R, G(R) = R.
Using ansatz �R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = a0(σeλt + τe−λt ).

Solutions exist for all three values of parameter k = 0,±1, under certain
conditions on function F(�), and parameters σ, τ, λ,Λ, k .

Obtained results generalize known cases in literature: in the first case

a(t) = a0 cosh (
√

Λ
3 t), in the second and third case for k = 0 we obtain

de Sitter solution.

All obtained solutions satisfy ä(t) = λ2a(t) > 0, i.e. are consistent with
observational data.

2. model: H(R) = R−1, G(R) = R.

Non-locality, R−1F(�)R, is invariant to transfor. R −→ cR, c ∈ R∗.

there are cosmological solutions of form a(t) = a0|t − t0|α, in the case
k = 0, for α 6= 0, 1/2 and 3α ∈ 1 + 2N, in cases k 6= 0, for α = 1.

Case a(t) = |t − t0| for k = −1 corresponds to Milne’s model.
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Earlier models 11

1. model: H(R) = R, G(R) = R.
Using ansatz �R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = a0(σeλt + τe−λt ).

Solutions exist for all three values of parameter k = 0,±1, under certain
conditions on function F(�), and parameters σ, τ, λ,Λ, k .

Obtained results generalize known cases in literature: in the first case

a(t) = a0 cosh (
√

Λ
3 t), in the second and third case for k = 0 we obtain

de Sitter solution.
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Earlier models 11

1. model: H(R) = R, G(R) = R.
Using ansatz �R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = a0(σeλt + τe−λt ).

Solutions exist for all three values of parameter k = 0,±1, under certain
conditions on function F(�), and parameters σ, τ, λ,Λ, k .

Obtained results generalize known cases in literature: in the first case

a(t) = a0 cosh (
√

Λ
3 t), in the second and third case for k = 0 we obtain

de Sitter solution.

All obtained solutions satisfy ä(t) = λ2a(t) > 0, i.e. are consistent with
observational data.

2. model: H(R) = R−1, G(R) = R.

Non-locality, R−1F(�)R, is invariant to transfor. R −→ cR, c ∈ R∗.

there are cosmological solutions of form a(t) = a0|t − t0|α, in the case
k = 0, for α 6= 0, 1/2 and 3α ∈ 1 + 2N, in cases k 6= 0, for α = 1.

Case a(t) = |t − t0| for k = −1 corresponds to Milne’s model.
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3. model: H(R) = Rp, G(R) = Rq , p ≥ q.

We considered case with scale factor in the form a(t) = a0 exp(− γ
12 t2)

For p = q = 1 there are infinite number of solutions, and constants γ and
Λ satisfy γ = −12Λ.

In other cases we proved existence of unique solution, for arbitrary
γ ∈ R. We explicitly found solutions for 1 ≤ q ≤ p ≤ 4.

4. model: H(R) = (R + R0)m, G(R) = (R + R0)m.

We considered scale factor and ansatz of the form

a(t) = Atn exp(− γ

12
t2) and �(R + R0)m = r(R + R0)m.

Using this ansatz we obtined the followinf five solutions:

r = m γ, n = 0, R0 = γ, m = 1
2

r = m γ, n = 0, R0 = γ
3 , m = 1

r = m γ, n = 1
2 , R0 = 4

3 γ, m = 1

r = m γ, n = 1
2 , R0 = 3 γ, m = − 1

4

r = m γ, n = 2m+1
3 , R0 = 7

3 γ, m = 1
2 .
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Earlier models 12

3. model: H(R) = Rp, G(R) = Rq , p ≥ q.

We considered case with scale factor in the form a(t) = a0 exp(− γ
12 t2)

For p = q = 1 there are infinite number of solutions, and constants γ and
Λ satisfy γ = −12Λ.

In other cases we proved existence of unique solution, for arbitrary
γ ∈ R. We explicitly found solutions for 1 ≤ q ≤ p ≤ 4.

4. model: H(R) = (R + R0)m, G(R) = (R + R0)m.

We considered scale factor and ansatz of the form

a(t) = Atn exp(− γ

12
t2) and �(R + R0)m = r(R + R0)m.

Using this ansatz we obtined the followinf five solutions:

r = m γ, n = 0, R0 = γ, m = 1
2

r = m γ, n = 0, R0 = γ
3 , m = 1

r = m γ, n = 1
2 , R0 = 4

3 γ, m = 1

r = m γ, n = 1
2 , R0 = 3 γ, m = − 1

4

r = m γ, n = 2m+1
3 , R0 = 7

3 γ, m = 1
2 .
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4. model: H(R) = (R + R0)m, G(R) = (R + R0)m.

In the case n = 0, m = 1
2 we found unique solution for arbitrary F( γ

2 )

and F ′( γ
2 ).

In the case n = 2
3 , m = 1

2 we found unique solution for F( γ
2 ) and

F ′( γ
2 ) which satisfy Λ = − 7

6γ.

In the case n = 1
2 , m = − 1

4 there is no solutions of EOM.

5. model: R = const.

If R = R0 > 0, then there exist non-singlar solutions for all three
values of parameter k = 0,±1, which are bounced in the cases k = 0, 1.

If R = R0 = 0 then exists Milne’s solution a(t) = |t + σ
2 |.

If R = R0 < 0, then there exists non-trivial singular cyclic

solution a(t) =
√
−12
R0
| cos 1

2 (
√
−R0

3 t − ϕ)| za k = −1.

Case R0 = 0 is considered as an limit case when R0 → 0, and
in both cases R0 < 0 and R0 > 0, we obtain Minkowski space.
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Model H(R) = G(R) =
√

R − 2Λ 14

� Recently, we have considered the nonlocal gravity model with cosmo-
logical constant Λ and without matter, given by

(MS) S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x ,

where F(�) = 1 +
∑+∞

n=1 fn �n +
∑+∞

n=1 f−n �−n

� It is a very special case since the EOM (5), for GG(R) =
√

R − 2 Λ, is simpli-
fied to

(Gµν + Λgµν) (1 + F(q)) +
1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0, (6)

where we take q = ζΛ.

� It is evident that EOM (6) are satisfied if F(q) = −1 and F ′(q) = 0.

� One such nonlocal operator F(�) is

F(�) = 1 +
+∞∑
n=1

f̃n
[(�

q

)n
+
( q
�

)n]
= 1− 1

2e

(�
q

e
�
q +

q
�

e
q
�

)
, q 6= 0.
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(MS) S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x ,

where F(�) = 1 +
∑+∞

n=1 fn �n +
∑+∞

n=1 f−n �−n
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√
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(Gµν + Λgµν) (1 + F(q)) +
1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0, (6)
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F(�) = 1 +
+∞∑
n=1

f̃n
[(�

q

)n
+
( q
�

)n]
= 1− 1

2e

(�
q

e
�
q +

q
�

e
q
�

)
, q 6= 0.
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1. Cosmological solution in the flat Universe (k = 0)

1.1. Solutions of the form a(t) = A tn eγt2

� There are two solutions:

a1(t) = A t
2
3 e

Λ
14 t2

, F(−
3
7

Λ) = −1, F ′(−
3
7

Λ) = 0,

a2(t) = A e
Λ
6 t2
, F(−Λ) = −1, F ′(−Λ) = 0.

1.2. New solutions of the form a(t) = (α eλt + β e−λt )γ

� In this case for αβ 6= 0, R 6= 2Λ and q 6= 0 we have solutions if

γ =
2
3
, q =

3
8

Λ, λ = ±
√

3
8

Λ .

� When αβ 6= 0, we have the following two special solutions:

a3(t) = A cosh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a4(t) = A sinh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.

Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Model H(R) = G(R) =
√

R − 2Λ 15

1. Cosmological solution in the flat Universe (k = 0)

1.1. Solutions of the form a(t) = A tn eγt2

� There are two solutions:

a1(t) = A t
2
3 e

Λ
14 t2

, F(−
3
7

Λ) = −1, F ′(−
3
7

Λ) = 0,

a2(t) = A e
Λ
6 t2
, F(−Λ) = −1, F ′(−Λ) = 0.

1.2. New solutions of the form a(t) = (α eλt + β e−λt )γ

� In this case for αβ 6= 0, R 6= 2Λ and q 6= 0 we have solutions if

γ =
2
3
, q =

3
8

Λ, λ = ±
√

3
8

Λ .

� When αβ 6= 0, we have the following two special solutions:

a3(t) = A cosh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a4(t) = A sinh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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1. Cosmological solution in the flat Universe (k = 0)

1.3. New solutions of the form a(t) = (α sinλt + β cosλt)γ

� For α 6= 0 and β 6= 0 there are only possibility for γ, γ = 2
3 . Taking β = ±α,

and A = α
2
3 , we have the following two solutions:

a5(t) = A
(

1 + sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a6(t) = A
(

1− sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.

� For α = 0 or β = 0, we have also two cosmological solutions with γ = 2
3 :

a7(t) = A sin
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a8(t) = A cos
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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2. Cosmological solution in the open and closed Universe (k = ±1)

2.1. Solutions of the form a(t) = A e±
√

Λ
6 t
, (k = ±1)

� For α 6= 0, β = 0 or α = 0, β 6= 0 we have the following solution:

a9(t) = A e±
√

Λ
6 t
, k = ±1, F(

1
3

Λ) = −1, F ′(
1
3

Λ) = 0, Λ > 0.

2.2. New solutions of the form a(t) = (α eλt + β e−λt )γ , (k = ±1)

� For α 6= 0, β 6= 0, R 6= 2Λ, q 6= 0 there are two following cosmological
solutions:

a10(t) = A cosh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0,

a11(t) = A sinh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0.
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� 1. Cosmological solution for a1(t) = A t
2
3 e

Λ
14 t2

, k = 0

The corresponding Hubble parameter , acceleration and the scalar
2 curvature are:

H1(t) =
ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

ä1(t) =
(
− 2

9
1
t2 +

1
3

Λ +
1

49
Λ2t2

)
a1(t),

R1(t) =
4
3

1
t2 +

22
7

Λ +
12
49

Λ2t2,

Friedman equations gives

ρ̄(t) =
2t−2 + 9

98 Λ2t2 − 9
14 Λ

12πG
, p̄(t) = − Λ

56πG
(3

7
Λt2 − 1

)
, (7)

where ρ̄ and p̄ are analogs of the energy density and pressure of the
dark side of the universe, respectively. The corresponding equation of
state is p̄(t) = w̄(t) ρ̄(t).
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ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,
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The expressions (7) implies that w̄(t)→ −1 when t →∞, what cor-
responds to an analog of Λ dark energy dominance in the standard
cosmological model.

It means that this nonlocal gravity model with cosmological solution

a(t) = A t
2
3 e

Λ
14 t2

describes some effects usually attributed to the dark
matter and dark energy.

This solution is invariant under transformation t → −t and singular at
cosmic time t = 0.

� Let us recall, the second Friedman equation

H2 =
ȧ2

a2 =
8πG

3
ρ− k

a2 +
Λ

3
, (8)

where ρ is energy density in the standard model of cosmology.
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Then we can rewrite the previous equation as,

H2 =
ȧ2

a2 =
8πG

3
ρr +

8πG
3

ρm −
k
a2 +

Λ

3

=
8 CrπG

a4 +
8 CmπG

a3 − k
a2 +

Λ

3

It follows

H2

H2
0

=
Ωr

a4 +
Ωm

a3 +
Ωk

a2 + ΩΛ

� Observational data obtained by Planck-2018 for the ΛCDM model:

t0 = (13.801± 0.024)× 109yr – age of the universe,

H(t0) = (67.40± 0.50) km/s/Mpc – Hubble parameter,

Ωm = 0.315± 0.007– matter density parameter,

ΩΛ = 0.685− Λ density parameter,

w0 = −1.03± 0.03– ratio of pressure to energy density.

Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Predictions of the model and observational data 20

Then we can rewrite the previous equation as,

H2 =
ȧ2
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From,
H1(t) =

ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

taking H1(t0) = H(t0) we calculate Λ1 = 1.05× 10−35s−2 that differs
from Λ = 3H2(t0) ΩΛ = 0.98× 10−35s−2 (by ΛCDM model).

We also computed

ä1(t0)/a1(t0) = 2.7× 10−36s−2

R(t0) = 4.5× 10−35s−2 and consequently

R(t0)− 2Λ = 2.4× 10−35s−2.

Replacing solution a1(t) with k = 0, Friedman equations give

ρ̄1(t) =
3

8πG

(
H2

1 (t)− Λ1

3

)
=

3
8πG

(4
9

t−2 − 1
7

Λ1 +
1

49
Λ2

1t2
)
,

p̄1(t) =
Λ1

56πG
(
1− 3

7
Λ1t2).
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We also computed

ä1(t0)/a1(t0) = 2.7× 10−36s−2

R(t0) = 4.5× 10−35s−2 and consequently

R(t0)− 2Λ = 2.4× 10−35s−2.

Replacing solution a1(t) with k = 0, Friedman equations give

ρ̄1(t) =
3

8πG

(
H2

1 (t)− Λ1

3

)
=

3
8πG

(4
9

t−2 − 1
7

Λ1 +
1

49
Λ2

1t2
)
,

p̄1(t) =
Λ1

56πG
(
1− 3

7
Λ1t2).
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ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

taking H1(t0) = H(t0) we calculate Λ1 = 1.05× 10−35s−2 that differs
from Λ = 3H2(t0) ΩΛ = 0.98× 10−35s−2 (by ΛCDM model).

We also computed
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Predictions of the model and observational data 22

For t = t0, from previous formula, and from ΛCDM model we have

ρ̄1(t0) = 2.26× 10−30 g
cm3 ,

ρ(t0) =
3

8πG

(
H2

0 −
Λ

3

)
= 2.68× 10−30 g

cm3 .

Then, for vacuum energy density of background solution a1(t) and
ΛCDM model, we have

ρ(t0)− ρ̄1(t0) =
Λ1 − Λ

8πG
= ρΛ1 − ρΛ = 0.42× 10−30 g

cm3 ,

Critical energy density: ρc =
3 H2

0

8πG
= 8.51× 10−30 g

cm3

and consequently,

ΩΛ1 =
ρΛ1

ρc
= 0.734, ΩΛ =

ρΛ

ρc
= 0.685, ∆ΩΛ = ΩΛ1 − ΩΛ = 0.049, (9)

Ωm1 =
ρ̄1(t0)

ρc
= 0.266, Ωm =

ρ(t0)

ρc
= 0.315, ∆Ωm = Ωm − Ωm1 = 0.049. (10)
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Predictions of the model and observational data 23

According to (9) and (10), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

� Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

� According to (7), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

� Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



Predictions of the model and observational data 23

According to (9) and (10), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

� Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

� According to (7), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

� Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.
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FRW metric – Christoffel symbols 1a

Non-trivial Christoffel symbols of Friedman – Roberton – Walker metric

Γ1
01 =

ȧ
a

Γ2
02 =

ȧ
a

Γ3
03 =

ȧ
a

Γ0
11 =

a ȧ
1− k r 2 Γ1

11 =
k r

1− k r 2 Γ2
12 =

1
r

Γ3
13 =

1
r

Γ0
22 = r 2 a ȧ Γ1

22 = r (k r 2 − 1) Γ3
23 = cot θ

Γ0
33 = r 2 a ȧ sin2 θ Γ1

33 = r (k r 2 − 1) sin2 θ Γ2
33 = − sin θ cos θ
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22 = r (k r 2 − 1) Γ3
23 = cot θ

Γ0
33 = r 2 a ȧ sin2 θ Γ1
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FRW metric – Curvature and Ricci 1a

Non-trivial components of curvature tensor

R0110 =
a ä

1− k r 2 R1221 = − r 2 a2 (ȧ2 + k)

1− k r 2

R0220 = r 2 a ä R1331 = − r 2 a2 sin2 θ (ȧ2 + k)

1− k r 2

R0330 = r 2 a ä sin2 θ R2332 = −r 4 a2 sin2 θ (ȧ2 + k)

Ricci tensor

Rµν =


− 3ä

a 0 0 0

0 u g11 0 0

0 0 u g22 0

0 0 0 u g33

 , u =
a ä + 2 (ȧ2 + k)

a2
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1− k r 2
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



FRW metric – Curvature and Ricci 1a

Non-trivial components of curvature tensor

R0110 =
a ä
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FRW metric – Einstein tensor 1a

Scalar curvature

R =
6 (a ä + ȧ2 + k)

a2

Einstein tensor

Gµν =


3 (ȧ2+k)

a2 0 0 0

0 −v g11 0 0

0 0 −v g22 0

0 0 0 −v g33

 , v =
2 a ä + ȧ2 + k

a2

FRW metric EOM EOM-2
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Zoran Rakić On nonlocal de Sitter gravity and its cosmological solutions



FRW metric – Einstein tensor 1a

Scalar curvature

R =
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