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Introduction

> It is well known that
Gravity is a theory of Poincare gauge symmetries

» We are going to introduce general method to obtain local
gauge theory for known global symmery
» First we introduce general matter field W”(x), where index A
contains the set of Lorentz indices (spinors, vectors, tensors,
. any combination of indices ).
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Local gauge transformations

» For theory invariant under global transformations we will
require invariance under corresponding local transformations

WAG) = RAs()WE () 1)
» RAg(x) is representation of the group G
A
RUs( = (e799) s = o3 —ilabl's 4+ ()

» [Q(x)]”5 is parameter of transformations

The infinitesimal variation takes a form
SUA(x) = RA(x)WE(x) — WA(x) = —i[Q(x)]"sVP(x). (3)

» We need Lagrangian invariant under this transformation. The
problem arises with the terms including derivatives. To solve it
we must introduce derivative, that transforms in a simple way
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Local gauge transformations for SU(N) and Poincare group

» For SU(N) group
Qp(x) = ' ()(Ti)"s (4)

with parameters £/(x) and corresponding generator (T;)" 5
» For Poincare group

i

Qp(x) = —e*(x)(Pa)"5 + 5

w?(x)(Map)'5 (5)

with parameters £7(x) and w?”(x) and corresponding
Poincare generator (P,)g and (M,,)"s
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Parallel transport

> In order to introduce derivative we should subtract values of
field WA(x) in two neighboring points. Except for scalars, we
do not know how to do it. So, we will first perform parallel
transport of the field WA(x) from point x* to the point y*

Wh(y) = Mp(y, \)WE(x), (6)

introducing comparator M%5(y, x).
For infinitesimal separation we have

I'IAB(X“ +ent xH) = (5é — ien“(AM(X))AB 4+ (7)

where (A,)?g(x) is some general connection
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Fock - lvanenko covariant derivatives

» Now we can define covariant derivative as difference between
values of the field WA at point x* 4+ en* and parallel transport
of the field WA from point x to the point x* + ent

1
(D W) = EITO B |:\UA(XH +ent) — \Uﬁ(x“ + 5n“)}

1
= lim — [\UA(x“ +ent) — MAp(x* + EI‘I’u,XH)\UB(X)}

e—0 ¢

— [anA(x) +i(Au(x)) g WE (x)} . (8)

Consequently, Fock - lvanenko covariant derivatives with
respect to general connection (A,(x))”g has a form

(Dll)AB = 5éau + i[A;L(X)]AB . (9)



From Fock-lvanenko covariant derivatives to non-Abelian and Poincare gauge theories

Transformation of comparator M%5(y, x)

» We already had expression for parallel transport of the field
WA(x) from point x* to the point y*

Vi(y) = Ms(y, x)WP(x) (10)
Since the transported field \Uﬁ‘(y), transforms as

Vir(y) = RA()VI(y), (11)
the comparator M”5(y, x) has transformation

Ng(y,x) = R4 ()N p(y, x)R™g(x). (12)
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Transformation lows for covariant derivatives

» The transformation low for covariant derivatives follows from
definition of covariant derivatives and transformation of the
fields

(D) = RAc()(Pu) bR 5 (x). (13)

» So, we obtain covariant derivative, that transforms in a simple
way
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Covariant derivative of product

» Covariant derivative of product of the fields
D, (V1 W)|"8 =
.1 Ay B /,1,
fim = [V V)< en) - ("’1H 26+ en)]
= lim - [(WAIIIQ )(x* +en*)
e—=0¢

—MAc(x* 4 ent, xM)WE ()NE p(x* + en*, x*)WE (x) ]

= [0, (UAVE) £ I(A)ACUSUE + (AP oVE] . (14)
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Universality of covariant derivatives

» So, we obtain
[Du(wlw2)]AB = (Duwl)AwQB + Wfpusz- (15)

» Therefore, the Leibniz rule valid
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From general connection and general covariant derivatives
to standard ones

» As well as gauge parameter Q4g(x) we can expand general
connection [A,(x)]"g in terms of group generators

> For example if generators are spin part of Lorentz subgroup

(S.p)"B the corresponding coefficients Azb(x) are spin
connection

A s = 502 ((S) s (16)
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General connection for vectors and spinors

> In particular case for vector fields we have

[Au()1% = S0 (Sab)a

(Sab)a = i(5§77bd - 5277ad) :

» and for spinor fields

(Au))s = b (x)(Se)"s

(Sbe)s = é[’Ym Vel

bc

.<(x) is spin connection

» where w

(19)

(20)
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Standard covariant derivatives for vectors

» Application of Fock - Ivanenko covariant derivatives on the
field WA(x) produces standard covariant derivatives of this
field

» For vector fields we have
A0 = 220 (55 — 05maa) = () %) (21)
which produces
(Du)a = 650, + 114010 = 350 — (@,)a(x)  (22)
or
(DaV)° = (Du)oaV? = 9,V — ()Sal)Ve  (23)

which is standard expression for covariant derivatives on vector
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Universality of covariant derivatives - Example

» Choosing spinor fields WA — /® we have
[Du(192)]* = (Dun) 05 + 95 (Dut2)”. (24)
» Introducing vector field
V2 = gy = i 0", (25)
we obtain

(DuV)* =25 [(Du)™0” + 3 (D) (26)

This is essence of the publications

V. A. Fock, D. D. Ivanenko, Compt. Rend. , 188 (1929) 1470
V. A. Fock, Zs. f. Phys., 57 (1929) 261

Following some other papers, | used the name Fock -
Ivanenko covariant derivatives
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Infinitesimal construction of field strength — Commutator
of covariant derivatives D,

» Commutator of covariant derivatives
[Dy, D) 8VE = (D) 6(D,W)E — (D) 5(D,V)? (27)
so that
A B . A
[D,, D,AsWE = (@,AV—&,A#—H[AN,A,,]) s (28)
> If we introduce general field strength
A
(Fun A6 = (90— 0 A+ ilAnA) 6. (29)
we have

[D;MDV]AB = i(qu(A))AB- (30)
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Integral construction of field strength — " Closed path”
comparison

» We can measures difference between initial value of field WA
and its final value \lf’|“(x) (after parallel transport) along
some infinitesimal closed curve C. The difference is
proportional to the the area €2n§‘n2 whose boundary is closed
curve C. So, we have

in’fn’Q’(CW\U)A =

i o [0 = W] = 2 [0 = )02
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"Closed path” comparison does not involve any derivatives
on WA(xH)
> Let us show that the "closed path” comparison acting on a
field WA(xH) . In
fact, since the difference is at the same point and scalar field
does not change after parallel transport, for any scalar field
©(x) we have

i Cun (o W) = lim 2 (1030 W) — () W)

.1 .
= () lim 5 [WAG) = W) = o(x)ind n5 (C W) (32)
This means that C,, cannot depend on derivatives of WA(x*),
because if it did it would also have to depend on derivatives of
©(x).

Therefore, we introduced name comparison instead derivative.
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" Closed path” comparison — calculation

» Comparator for parallel transport along infinitesimal closed
curve is

N4g(x) = 03 — ie?n} n5(Fu)"s . (33)

» So we have

= inf'ny (Fu) 8 VP(x), (34)
which produces

(CIW)AB = (]:HV)AB' (35)
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Field strength for Poincare group produces of torsion and
curvature
» Field strength

(Ful )5 = (9.4~ 0,4, +i14.40) 5. (30)

> Let us first derive commutator [A,(x), A,(x)] Lie algebra of
Poincare group

A0, A5 = 2 B (1P, Mool

1 1
—gwib(X)Bﬁ () [Mab, Pc]e + Zwib(X)@d(X)[Mam Mcd]*5 ,(37)
or

[Au(x), Ay ()5 = i [wi()BE(x) — win(x)BE() | (P2) s

5 [We(wE(x) — we()wP(x)] (Map) A -(38)
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Torsion and curvature

» We can write field strength for Poincare group linear in
generators

(Ful A5 = T (Pa)'s — SR @) (Mas)s  (40)
» curvature
Rab,“,(w) = 8uw,fb - 6,,w;’jb + wzcwycb - wf,’cwucb, (41)
» torsion
T2, = 0uB2 +wipBl — 0,B3 — wi,B) = D,BZ — D, B (42)

Note that curvature R??,,, (w) and torsion T}, do not depend
on representation
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Transformations of torsion and curvature

S(Fu(A) 8 = —i[Q, (Fu (A5 - (43)
For Poincare group
0wT? = —w?cT 0, 0T, =R®,(wep, (44)
and

R 1y (w) = w2 (X)RP (W) + wPe(x)R* y (w)
0:R?™,,(w) = 0. (45)
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Tetrad field

» The field WA[x?(x")] is function of local coordinates x? which
depends on space-time coordinates x*. Since x? is vector in
flat space we can apply definition of covariant derivative to
the vector x? instead to WA

» |f we introduce

dx" =ent,

dx? = x(x" +en”) — xj(x" + en) (46)
then we can define tetrad field e?,(x) as
dx? = dx"(D,x)? = dx"e?,(x) (47)
> then

?u(x) = (Du)?bx” = 8x + i(Au(x))?px". (48)
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Tetrad field - 2

» Using expression for the Fock - lvanenko covariant derivatives
with respect to both wzb(x) and Bjj(x) we obtain

e%u(x) = (030 + iBE(X)(Pe)* — 5w (x)(Mea)?s | x" . (49)
Using
(Pc)?p = 03i0c,
(Mca)s = /(5? Ndb — 0 77bc) +i05(xc0d — xa0c),  (50)
we have
(Meg)?px? =0. (51)

» Consequently

€%, (x) = 9x° — BI(x). (52)
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Metric tensor

» Now the expression for interval takes a form
ds? = napdx?dx? = nabe"ueb,,dx“dx” = gudx'dx”, (53)
where we introduced the metric tensor
— a b 54
8uv = MNab€ € v - ( )

In terms of gauge field Bj(x) the metric tensor has a form

Buv = nab(auxa - B;)(auxb - BS) . (55)
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Gauge invariant Lagrangians

> In the Yang-Mills case it is not possible to construct
Lagrangian linear in field strength, because Tr(T') = 0. So,
the nontrivial one is bilinear in field strength

» For local Poincare group there is the other possibility to
construct invariants which produces scalar curvature

R0, (w)(Sap)a etc €9 = 2iR (56)

So, we can chose Lagrangian

Ly = %Rabuu(w)(sab)cd el e — R. (57)
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Gauge invariant Lagrangians - 1

» We can find bilinear form with local Poincare group
2
Lo = Tr(’r‘)abuusab) = 4RMVPUR#VPU (58)
» To construct a theory of matter field interacting with

gravitational field, we can take standard Lagrangian for
matter field and replace ordinary derivative with covariant one

9y — D, =0, ——wabs (59)



