From Fock-Ivanenko covariant derivatives to non-Abelian and Poincare gauge theories

From Fock-Ivanenko covariant derivatives to non-Abelian and Poincare gauge theories

Branislav Sazdović

Institute of Physics, University of Belgrade, Serbia

3rd Conference on Nonlinearity 2023 Belgrade, Serbia

Introduction

- It is well known that Gravity is a theory of Poincare gauge symmetries
- We are going to introduce general method to obtain local gauge theory for known global symmery
- ► First we introduce general matter field Ψ^A(x), where index A contains the set of Lorentz indices (spinors, vectors, tensors, ... any combination of indices).

Local gauge transformations

 For theory invariant under global transformations we will require invariance under corresponding local transformations

$$\Psi^{\prime A}(x) = R^{A}{}_{B}(x)\Psi^{B}(x) \tag{1}$$

• $R^{A}{}_{B}(x)$ is representation of the group G

$$R^{A}{}_{B}(x) = \left(e^{-i\Omega(x)}\right)^{A}{}_{B} = \delta^{A}_{B} - i[\Omega(x)]^{A}{}_{B} + \cdots$$
(2)

• $[\Omega(x)]^{A}{}_{B}$ is parameter of transformations

The infinitesimal variation takes a form

$$\delta \Psi^{A}(x) = R^{A}{}_{B}(x)\Psi^{B}(x) - \Psi^{A}(x) = -i[\Omega(x)]^{A}{}_{B}\Psi^{B}(x).$$
(3)

We need Lagrangian invariant under this transformation. The problem arises with the terms including derivatives. To solve it we must introduce derivative, that transforms in a simple way

Local gauge transformations for SU(N) and Poincare group

▶ For SU(N) group

$$\Omega^{A}{}_{B}(x) = \varepsilon^{i}(x)(T_{i})^{A}{}_{B}$$
(4)

with parameters $\varepsilon^{i}(x)$ and corresponding generator $(T_{i})^{A}{}_{B}$

For Poincare group

$$\Omega^{A}{}_{B}(x) = -\varepsilon^{a}(x)(P_{a})^{A}{}_{B} + \frac{i}{2}\omega^{ab}(x)(M_{ab})^{A}{}_{B}$$
(5)

with parameters $\varepsilon^{a}(x)$ and $\omega^{ab}(x)$ and corresponding Poincare generator $(P_{a})^{A}{}_{B}$ and $(M_{ab})^{A}{}_{B}$

Parallel transport

In order to introduce derivative we should subtract values of field Ψ^A(x) in two neighboring points. Except for scalars, we do not know how to do it. So, we will first perform parallel transport of the field Ψ^A(x) from point x^μ to the point y^μ

$$\Psi_{\parallel}^{A}(y) = \Pi^{A}{}_{B}(y, x)\Psi^{B}(x), \qquad (6)$$

introducing comparator $\Pi^{A}{}_{B}(y, x)$. For infinitesimal separation we have

$$\Pi^{A}{}_{B}(x^{\mu}+\varepsilon n^{\mu},x^{\mu})=\delta^{A}_{B}-i\varepsilon n^{\mu}(A_{\mu}(x))^{A}{}_{B}+\cdots, \qquad (7)$$

where $(A_{\mu})^{A}{}_{B}(x)$ is some general connection

Fock - Ivanenko covariant derivatives

Now we can define covariant derivative as difference between values of the field Ψ^A at point x^μ + εn^μ and parallel transport of the field Ψ^A from point x to the point x^μ + εn^μ

$$n^{\mu}(\mathcal{D}_{\mu}\Psi)^{A} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\Psi^{A}(x^{\mu} + \varepsilon n^{\mu}) - \Psi^{A}_{\parallel}(x^{\mu} + \varepsilon n^{\mu}) \right]$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\Psi^{A}(x^{\mu} + \varepsilon n^{\mu}) - \Pi^{A}_{B}(x^{\mu} + \varepsilon n^{\mu}, x^{\mu})\Psi^{B}(x) \right]$$

$$= n^{\mu} \left[\partial_{\mu}\Psi^{A}(x) + i(A_{\mu}(x))^{A}_{B}\Psi^{B}(x) \right].$$
(8)

Consequently, Fock - Ivanenko covariant derivatives with respect to general connection $(A_{\mu}(x))^{A}{}_{B}$ has a form

$$(\mathcal{D}_{\mu})^{A}{}_{B} = \delta^{A}_{B}\partial_{\mu} + i[A_{\mu}(x)]^{A}{}_{B}.$$
(9)

Transformation of comparator $\Pi^{A}{}_{B}(y, x)$

 We already had expression for parallel transport of the field Ψ^A(x) from point x^μ to the point y^μ

$$\Psi_{\parallel}^{A}(y) = \Pi^{A}{}_{B}(y, x)\Psi^{B}(x)$$
(10)

Since the transported field $\Psi_{\parallel}^{\mathcal{A}}(y)$, transforms as

$$\Psi_{\parallel}^{\prime A}(y) = R^{A}{}_{B}(y)\Psi_{\parallel}^{A}(y), \qquad (11)$$

the comparator $\Pi^{A}{}_{B}(y,x)$ has transformation

$$\Pi^{A}{}_{B}(y,x) = R^{A}{}_{C}(y)\Pi^{C}{}_{D}(y,x)R^{\dagger D}{}_{B}(x).$$
(12)

Transformation lows for covariant derivatives

 The transformation low for covariant derivatives follows from definition of covariant derivatives and transformation of the fields

$$(\mathcal{D}'_{\mu})^{A}{}_{B} = R^{A}{}_{C}(x)(\mathcal{D}_{\mu})^{C}{}_{D}R^{\dagger D}{}_{B}(x).$$
(13)

 So, we obtain covariant derivative, that transforms in a simple way

Covariant derivative of product

Covariant derivative of product of the fields

$$n^{\mu} [\mathcal{D}_{\mu}(\Psi_{1}\Psi_{2})]^{AB} =$$

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[(\Psi_{1}^{A}\Psi_{2}^{B})(x^{\mu} + \varepsilon n^{\mu}) - (\Psi_{1\parallel}^{A}\Psi_{2\parallel}^{B})(x^{\mu} + \varepsilon n^{\mu}) \right]$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[(\Psi_{1}^{A}\Psi_{2}^{B})(x^{\mu} + \varepsilon n^{\mu}) - \Pi^{A}{}_{C}(x^{\mu} + \varepsilon n^{\mu}, x^{\mu})\Psi_{1}^{C}(x)\Pi^{B}{}_{D}(x^{\mu} + \varepsilon n^{\mu}, x^{\mu})\Psi_{2}^{D}(x) \right]$$

$$= n^{\mu} \left[\partial_{\mu}(\Psi_{1}^{A}\Psi_{2}^{B}) + i(A_{\mu})^{A}{}_{C}\Psi_{1}^{C}\Psi_{2}^{B} + i\Psi_{1}^{A}(A_{\mu})^{B}{}_{D}\Psi_{2}^{D} \right], \quad (14)$$

Universality of covariant derivatives

So, we obtain

$$[\mathcal{D}_{\mu}(\Psi_{1}\Psi_{2})]^{AB} = (\mathcal{D}_{\mu}\Psi_{1})^{A}\Psi_{2}^{B} + \Psi_{1}^{A}\mathcal{D}_{\mu}\Psi_{2}^{B}.$$
(15)

Therefore, the Leibniz rule valid

From general connection and general covariant derivatives to standard ones

- As well as gauge parameter Ω^A_B(x) we can expand general connection [A_µ(x)]^A_B in terms of group generators
- ► For example if generators are spin part of Lorentz subgroup $(S_{ab})^A{}_B$ the corresponding coefficients $A^{ab}_{\mu}(x)$ are spin connection

$$[A_{\mu}(x)]^{A}{}_{B} = \frac{1}{2}\omega_{\mu}^{ab}(x)(S_{ab})^{A}{}_{B}$$
(16)

General connection for vectors and spinors

In particular case for vector fields we have

$$[A_{\mu}(x)]^{c}_{d} = \frac{1}{2} \omega_{\mu}^{ab}(x) (S_{ab})^{c}_{d}, \qquad (17)$$

$$(S_{ab})^{c}{}_{d} = i \left(\delta^{c}_{a} \eta_{bd} - \delta^{c}_{b} \eta_{ad} \right).$$
⁽¹⁸⁾

and for spinor fields

$$(A_{\mu}(x))^{\alpha}{}_{\beta} = \frac{1}{2} \omega^{bc}_{\mu}(x) (S_{bc})^{\alpha}{}_{\beta}, \qquad (19)$$

$$(S_{bc})^{\alpha}{}_{\beta} = \frac{i}{4}[\gamma_b, \gamma_c] \tag{20}$$

• where $\omega_{\mu}^{bc}(x)$ is spin connection

Standard covariant derivatives for vectors

- Application of Fock Ivanenko covariant derivatives on the field Ψ^A(x) produces standard covariant derivatives of this field
- For vector fields we have

$$[A_{\mu}(x)]^{c}_{d} = \frac{i}{2}\omega_{\mu}^{ab}(x)\left(\delta_{a}^{c}\eta_{bd} - \delta_{b}^{c}\eta_{ad}\right) = i(\omega_{\mu})^{c}_{d}(x) \quad (21)$$

which produces

$$(\mathcal{D}_{\mu})^{c}{}_{d} = \delta^{c}_{d}\partial_{\mu} + i[A_{\mu}(x)]^{c}{}_{d} = \delta^{c}_{d}\partial_{\mu} - (\omega_{\mu})^{c}{}_{d}(x)$$
(22)

or

$$(D_{\mu}V)^{c} = (\mathcal{D}_{\mu})^{c}{}_{d}V^{d} = \partial_{\mu}V^{c} - (\omega_{\mu})^{c}{}_{d}(x)V^{d}$$
(23)

which is standard expression for covariant derivatives on vector

Universality of covariant derivatives - Example

• Choosing spinor fields $\Psi^A \rightarrow \psi^{\alpha}$ we have

$$[\mathcal{D}_{\mu}(\psi_{1}\psi_{2})]^{\alpha\beta} = (\mathcal{D}_{\mu}\psi_{1})^{\alpha}\psi_{2}^{\beta} + \psi_{1}^{\alpha}(\mathcal{D}_{\mu}\psi_{2})^{\beta}.$$
(24)

Introducing vector field

$$V^{a} = \bar{\psi}\gamma^{a}\psi = \bar{\psi}^{\alpha}\gamma^{a}_{\alpha\beta}\psi^{\beta}, \qquad (25)$$

we obtain

$$(\mathcal{D}_{\mu}V)^{a} = \gamma^{a}_{\alpha\beta} \left[(\mathcal{D}_{\mu}\bar{\psi})^{\alpha}\psi^{\beta} + \bar{\psi}^{\alpha}(\mathcal{D}_{\mu}\psi)^{\beta} \right]$$
(26)

This is essence of the publications V. A. Fock, D. D. Ivanenko, *Compt. Rend.*, **188** (1929) 1470 V. A. Fock, *Zs. f. Phys.*, **57** (1929) 261 Following some other papers, I used the name Fock -Ivanenko covariant derivatives Infinitesimal construction of field strength – Commutator of covariant derivatives \mathcal{D}_{μ}

Commutator of covariant derivatives

$$[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]^{A}{}_{B}\Psi^{B} = (\mathcal{D}_{\mu})^{A}{}_{B}(\mathcal{D}_{\nu}\Psi)^{B} - (\mathcal{D}_{\nu})^{A}{}_{B}(\mathcal{D}_{\mu}\Psi)^{B}$$
(27)

so that

$$[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]^{A}{}_{B}\Psi^{B} = \left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + i[A_{\mu}, A_{\nu}]\right)^{A}{}_{B} \qquad (28)$$

If we introduce general field strength

$$(\mathcal{F}_{\mu\nu}(A))^{A}{}_{B} = \left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + i[A_{\mu}, A_{\nu}]\right)^{A}{}_{B}, \qquad (29)$$

we have

$$\left[\mathcal{D}_{\mu},\mathcal{D}_{\nu}\right]^{A}{}_{B}=i(\mathcal{F}_{\mu\nu}(A))^{A}{}_{B}.$$
(30)

Integral construction of field strength – "Closed path" comparison

We can measures difference between initial value of field Ψ^A and its final value Ψ^A_{||}(x) (after parallel transport) along some infinitesimal closed curve C. The difference is proportional to the the area ε²n^μ₁n^ν₂ whose boundary is closed curve C. So, we have

$$in_{1}^{\mu}n_{2}^{\nu}(\mathcal{C}_{\mu\nu}\Psi)^{A} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} \left[\Psi^{A}(x^{\mu}) - \Psi^{A}_{\parallel}(x^{\mu}) \right] = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} \left[\Psi^{A}(x^{\mu}) - \Pi^{A}_{B}(x^{\mu})\Psi^{B}(x) \right]$$

"Closed path" comparison does not involve any derivatives on $\Psi^A(x^\mu)$

• Let us show that the "closed path" comparison acting on a field $\Psi^A(x^{\mu})$ does not involve any derivatives on $\Psi^A(x^{\mu})$. In fact, since the difference is at the same point and scalar field does not change after parallel transport, for any scalar field $\varphi(x)$ we have

$$in_{1}^{\mu}n_{2}^{\nu}[\mathcal{C}_{\mu\nu}(\varphi\Psi)]^{A} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} \left[\varphi(x)\Psi^{A}(x^{\mu}) - \varphi(x)\Psi^{A}_{\parallel}(x^{\mu})\right]$$
$$= \varphi(x)\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} \left[\Psi^{A}(x^{\mu}) - \Psi^{A}_{\parallel}(x^{\mu})\right] = \varphi(x)in_{1}^{\mu}n_{2}^{\nu}(\mathcal{C}_{\mu\nu}\Psi)^{A}.$$
(32)

This means that $C_{\mu\nu}$ cannot depend on derivatives of $\Psi^A(x^{\mu})$, because if it did it would also have to depend on derivatives of $\varphi(x)$.

Therefore, we introduced name comparison instead derivative.

"Closed path" comparison - calculation

 Comparator for parallel transport along infinitesimal closed curve is

$$\Pi^{A}{}_{B}(x) = \delta^{A}_{B} - i\varepsilon^{2} n^{\mu}_{1} n^{\nu}_{2} (\mathcal{F}_{\mu\nu})^{A}{}_{B} .$$
(33)

So we have

$$in_{1}^{\mu}n_{2}^{\nu}(\mathcal{C}_{\mu\nu}\Psi)^{A} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} \left[\Psi^{A}(x^{\mu}) - \Pi^{A}{}_{B}(x^{\mu})\Psi^{B}(x) \right]$$
$$= in_{1}^{\mu}n_{2}^{\nu}(\mathcal{F}_{\mu\nu})^{A}{}_{B}\Psi^{B}(x), \qquad (34)$$

which produces

$$(\mathcal{C}_{\mu\nu})^{A}{}_{B} = (\mathcal{F}_{\mu\nu})^{A}{}_{B}.$$
(35)

Field strength for Poincare group produces of torsion and curvature

Field strength

$$\left(\mathcal{F}_{\mu\nu}(A)\right)^{A}{}_{B} = \left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + i[A_{\mu}, A_{\nu}]\right)^{A}{}_{B}, \qquad (36)$$

► Let us first derive commutator [A_µ(x), A_ν(x)] Lie algebra of Poincare group

$$[A_{\mu}(x), A_{\nu}(x)]^{A}{}_{B} = -\frac{1}{2}B^{a}_{\mu}(x)\omega^{cd}_{\nu}(x)[P_{a}, M_{cd}]^{A}{}_{B}$$
$$-\frac{1}{2}\omega^{ab}_{\mu}(x)B^{c}_{\nu}(x)[M_{ab}, P_{c}]^{A}{}_{B} + \frac{1}{4}\omega^{ab}_{\mu}(x)\omega^{cd}_{\nu}(x)[M_{ab}, M_{cd}]^{A}{}_{B}, (37)$$
or
$$[A_{\mu}(x), A_{\nu}(x)]^{A}{}_{B} = i\left[\omega^{a}_{\mu b}(x)B^{b}_{\nu}(x) - \omega^{a}_{\nu b}(x)B^{b}_{\mu}(x)\right](P_{a})^{A}{}_{B}$$
$$+\frac{i}{2}\left[\omega^{a}_{\mu c}(x)\omega^{cb}_{\nu}(x) - \omega^{a}_{\nu c}(x)\omega^{cb}_{\mu}(x)\right](M_{ab})^{A}{}_{B}. (38)$$

Torsion and curvature

 We can write field strength for Poincare group linear in generators

$$(\mathcal{F}_{\mu\nu}(A))^{A}{}_{B} = T^{a}_{\mu\nu}(P_{a})^{A}{}_{B} - \frac{1}{2}R^{ab}{}_{\mu\nu}(\omega)(M_{ab})^{A}{}_{B} \qquad (40)$$

curvature

$$R^{ab}{}_{\mu\nu}(\omega) = \partial_{\mu}\omega^{ab}_{\nu} - \partial_{\nu}\omega^{ab}_{\mu} + \omega^{ac}_{\mu}\omega_{\nu c}{}^{b} - \omega^{ac}_{\nu}\omega_{\mu c}{}^{b}, \quad (41)$$

torsion

$$T^{a}_{\mu\nu} = \partial_{\mu}B^{a}_{\nu} + \omega^{a}_{\mu b}B^{b}_{\nu} - \partial_{\nu}B^{a}_{\mu} - \omega^{a}_{\nu b}B^{b}_{\mu} = D_{\mu}B^{a}_{\nu} - D_{\nu}B^{a}_{\mu}, (42)$$

Note that curvature $R^{ab}_{\mu\nu}(\omega)$ and torsion $T^{a}_{\mu\nu}$ do not depend on representation

Transformations of torsion and curvature

$$\delta(\mathcal{F}_{\mu\nu}(A))^{A}{}_{B} = -i[\Omega, (\mathcal{F}_{\mu\nu}(A))]^{A}{}_{B}.$$
(43)

For Poincare group

$$\delta_{\omega} T^{a}{}_{\mu\nu} = -\omega^{a}{}_{c} T^{c}{}_{\mu\nu}, \qquad \delta_{\varepsilon} T^{a}{}_{\mu\nu} = R^{ab}{}_{\mu\nu}(\omega)\varepsilon_{b}, \quad (44)$$

and

$$\delta_{\omega} R^{ab}{}_{\mu\nu}(\omega) = \omega^{a}{}_{c}(x) R^{cb}{}_{\mu\nu}(\omega) + \omega^{b}{}_{c}(x) R^{ac}{}_{\mu\nu}(\omega),$$

$$\delta_{\varepsilon} R^{ab}{}_{\mu\nu}(\omega) = 0.$$
(45)

Tetrad field

- The field Ψ^A[x^a(x^µ)] is function of local coordinates x^a which depends on space-time coordinates x^µ. Since x^a is vector in flat space we can apply definition of covariant derivative to the vector x^a instead to Ψ^A.
- If we introduce

$$dx^{\mu} \equiv \varepsilon n^{\mu},$$

$$dx^{a} \equiv x^{a}(x^{\mu} + \varepsilon n^{\mu}) - x^{a}_{\parallel}(x^{\mu} + \varepsilon n^{\mu})$$
(46)

then we can define tetrad field $e^{a}_{\mu}(x)$ as

$$dx^{a} = dx^{\mu} (\mathcal{D}_{\mu} x)^{a} = dx^{\mu} e^{a}{}_{\mu} (x)$$
(47)

then

$$e^{a}{}_{\mu}(x) = (\mathcal{D}_{\mu})^{a}{}_{b}x^{b} = \partial_{\mu}x^{a} + i(A_{\mu}(x))^{a}{}_{b}x^{b}.$$
 (48)

Tetrad field - 2

 Using expression for the Fock - Ivanenko covariant derivatives with respect to both ω^{ab}_μ(x) and B^a_μ(x) we obtain

$$e^{a}_{\mu}(x) = \left[\delta^{a}_{b}\partial_{\mu} + iB^{c}_{\mu}(x)(P_{c})^{a}_{b} - \frac{i}{2}\omega^{cd}_{\mu}(x)(M_{cd})^{a}_{b}\right]x^{b}.$$
 (49)
Using

$$(P_c)^a{}_b = \delta^a_b i \partial_c ,$$

$$(M_{cd})^a{}_b = i \Big(\delta^a_c \eta_{db} - \delta^a_d \eta_{bc} \Big) + i \delta^a_b (x_c \partial_d - x_d \partial_c) , \quad (50)$$

we have

$$(M_{cd})^{a}{}_{b}x^{b} = 0. (51)$$

Consequently

$$e^{a}{}_{\mu}(x) = \partial_{\mu}x^{a} - B^{a}_{\mu}(x).$$
 (52)

Metric tensor

Now the expression for interval takes a form

$$ds^{2} = \eta_{ab}dx^{a}dx^{b} = \eta_{ab}e^{a}{}_{\mu}e^{b}{}_{\nu}dx^{\mu}dx^{\nu} \equiv g_{\mu\nu}dx^{\mu}dx^{\nu}, \quad (53)$$

where we introduced the metric tensor

$$g_{\mu\nu} = \eta_{ab} e^a{}_{\mu} e^b{}_{\nu} \,. \tag{54}$$

In terms of gauge field $B^a_\mu(x)$ the metric tensor has a form

$$g_{\mu\nu} = \eta_{ab} (\partial_{\mu} x^{a} - B^{a}_{\mu}) (\partial_{\nu} x^{b} - B^{b}_{\nu}) .$$
(55)

Gauge invariant Lagrangians

- In the Yang-Mills case it is not possible to construct Lagrangian linear in field strength, because Tr(Tⁱ) = 0. So, the nontrivial one is bilinear in field strength
- For local Poincare group there is the other possibility to construct invariants which produces scalar curvature

$$R^{ab}{}_{\mu\nu}(\omega)(S_{ab})^c{}_d e^\mu{}_c e^{\nu d} = 2iR$$
(56)

So, we can chose Lagrangian

$$\mathcal{L}_{1} = \frac{1}{2i} R^{ab}{}_{\mu\nu}(\omega) (S_{ab})^{c}{}_{d} e^{\mu}{}_{c} e^{\nu d} = R.$$
 (57)

Gauge invariant Lagrangians - 1

We can find bilinear form with local Poincare group

$$\mathcal{L}_{2} = Tr \left(R^{ab}_{\ \mu\nu} S_{ab} \right)^{2} = 4 R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma}$$
(58)

 To construct a theory of matter field interacting with gravitational field, we can take standard Lagrangian for matter field and replace ordinary derivative with covariant one

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - \frac{i}{2} \,\omega_{\mu}^{ab} \,S_{ab} \,.$$
 (59)