Quantum aspects of gravitational collapse:

non-singularity and non-locality

Dejan Stojkovic SUNY at Buffalo

CAHH SANS

3rd CONFERENCE ON NONLINEARITY

"Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse" Anshul Saini, Dejan Stojkovic Phys.Rev. D89, 4, 044003

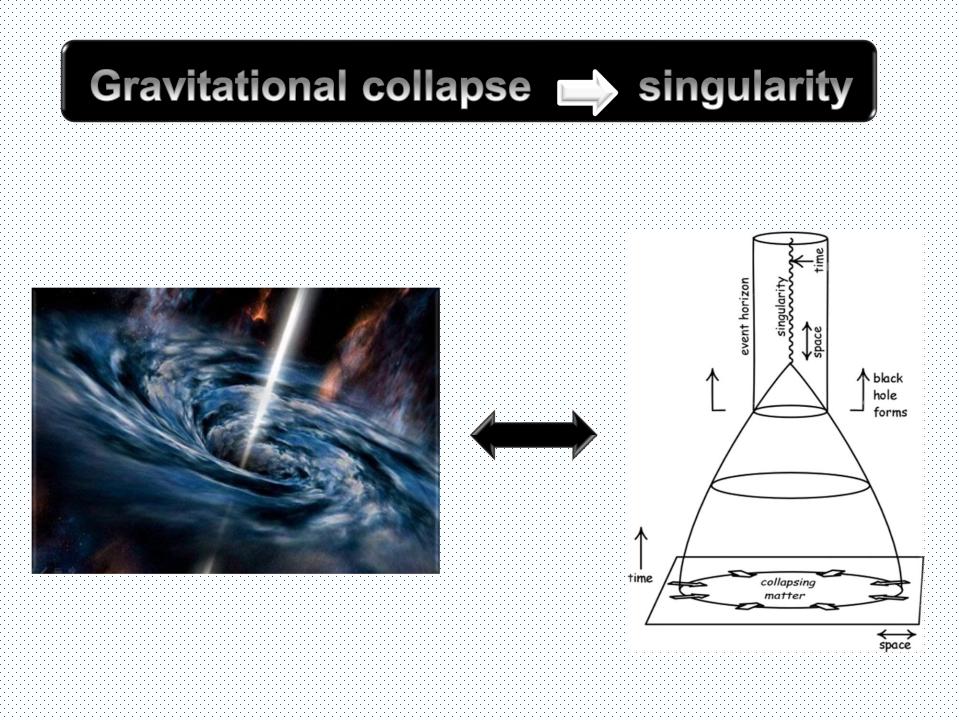
Motivation

Black Holes

- Most interesting and intriguing objects in our Universe
- Singularity and horizon are roots of many problems
- Full QM treatment might resolve some of them
- ✤ A lot of words and nice pictures (complementarity, firewalls...)
- Very few concrete calculations

Outline

- Singularities some basic facts
- Gravitational collapse infalling observer - Schrodinger equation
- Non-local equation as $R \rightarrow 0$
- Non-singular wave function
- Quantization can remove singularities!

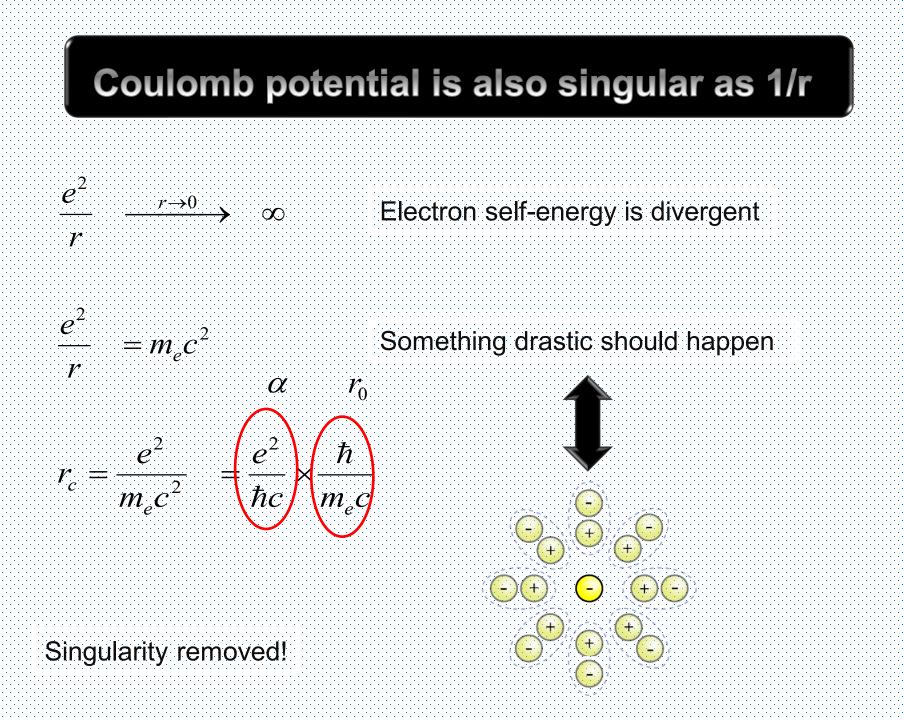


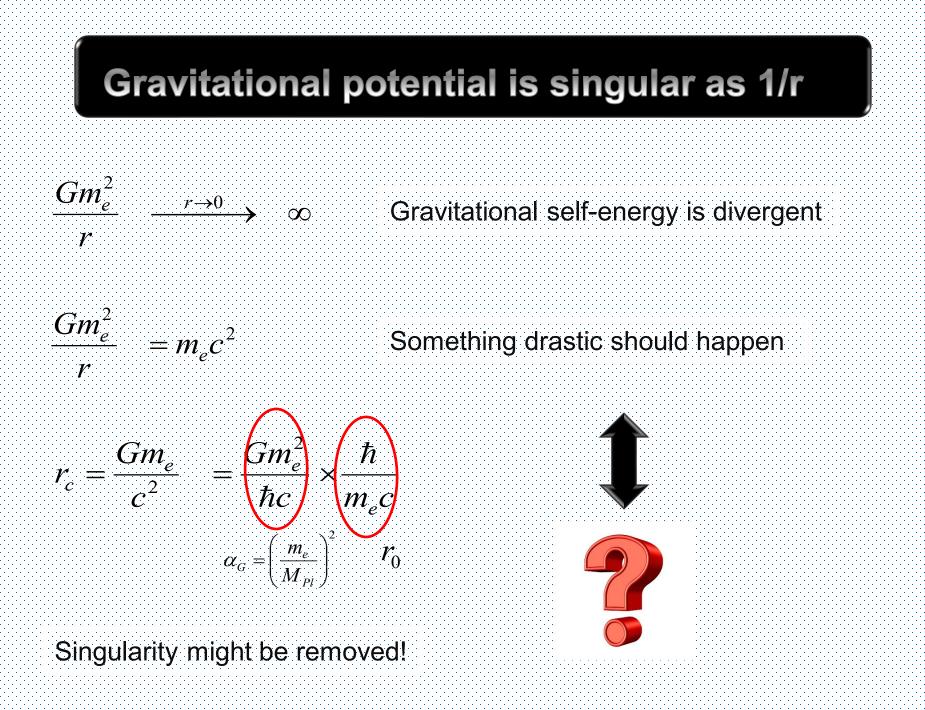
Gravitational potential is singular as 1/r

Questions that need clear answer:

1. True singularity of the space-time?

2. We are extrapolating our theory beyond its region of validity?

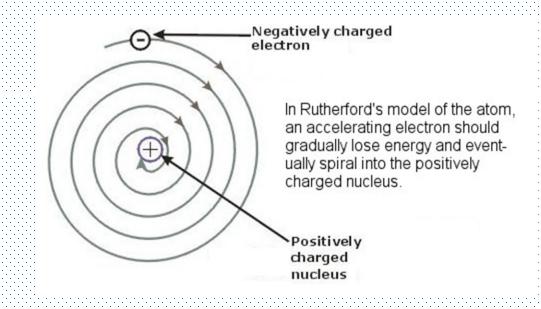




Coulomb potential is singular as 1/r

Consequence: atom can't exist classically

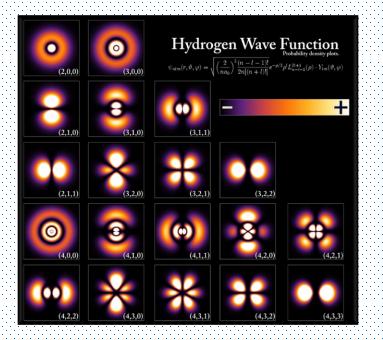
Electron would spiral down in a fraction of a second



Quantization fixes the singularity and saves the atom

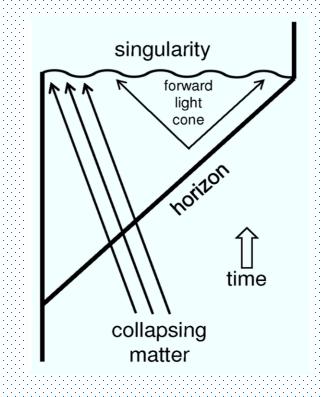
Hydrogen atom ground state wave function:

 $\psi(R) = const \ e^{-R/a_0} \xrightarrow{R \to 0} const$

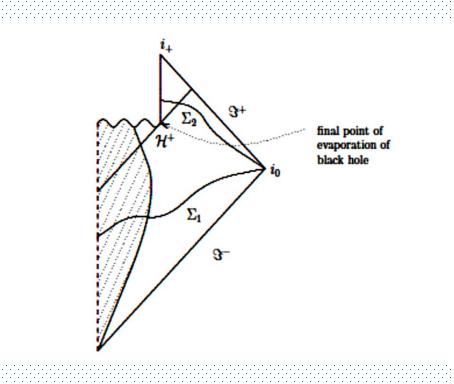


Quantization can perhaps do the same in gravity

What do we gain by removing singularities from gravity?



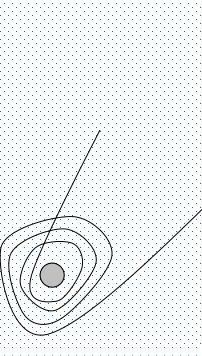
- Black hole singularity makes the space-time incomplete
- Infalling observer reaches it in finite proper time
- Removing the singularity makes the space-time complete



Standard Penrose diagram for evaporating black hole

- Σ₁ is the Cauchy surface but Σ₂ is not since its past domain of dependence does not include the black hole region (which disappears)
 Evolution is not unitary!
- If we remove the singularity, the problem will perhaps be solved

 Quantum mechanical effects may turn the singularity into a regular region of strong gravity



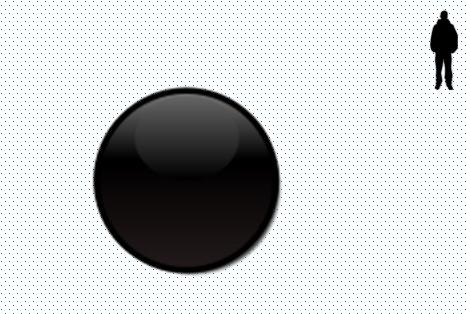
If singularity never forms, then the horizon can't be a global event horizon!

It could trap light for a while, but when enough mass is lost to radiation, the light will be released out!

The original black hole solution is Schwarzschild

$$ds^{2} = -\left(1 - \frac{R_{S}}{r}\right)c^{2}dt^{2} + \frac{1}{1 - R_{S}/r}dr^{2} + r^{2}d\Omega^{2}$$

• It represents a point of view of a remote static observer



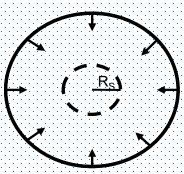
- However, we want to study the process of collapse from a point of view of an observer who can see past the horizon
- i.e. an infalling observer
- Classically, he can reach singularity in finite time
- and witness what is going on there

Question we explore:

Quantum aspects of gravitational collapse in the foliation of an infalling observer

The Setup

The collapsing spherical shell of matter is represented by an infinitely thin shell of mass M and radius R(t)

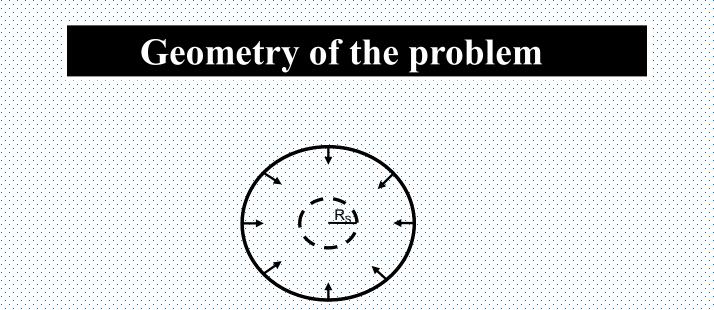


• We work in Eddington-Finkelstein ingoing coordinates (t,r) \rightarrow (v,r)

$$v = t + r^*$$
 $r^* = r + 2GM \ln \left| \frac{r}{2GM} - 1 \right|$

$$ds^{2} = -\left(1 - \frac{R_{s}}{r}\right) dv^{2} + 2dvdr + r^{2}d\Omega^{2}$$

Metric is non-singular at the horizon



Metric outside the shell, i.e. for r > R(v), is Eddington-Finkelstein

$$ds^{2} = -\left(1 - \frac{R_{s}}{r}\right) dv^{2} + 2dvdr + r^{2}d\Omega^{2}$$

Metric inside the shell, i.e. for r < R(v), is by Birkhoff's theorem flat

$$ds^2 = -dT^2 + dr^2 + r^2 d\Omega^2$$

Use Gauss-Codazzi method to find conserved quantity:

$$M = \frac{\mu}{\sqrt{1 - R_T^2}} - \frac{\mu^2}{2R}$$

This quantity contains:

- rest mass of the shell μ =4 $\pi\sigma$ R², σ is the mass per unit area
- kinetic energy represented by $R_T \equiv \partial R / \partial T$
- gravitational self-energy $\mu^2/(2R)$

Actually, M is the total relativistic energy of the system

We identify M with the Hamiltonian of the system

$$H = \frac{\mu}{\sqrt{1 - R_T^2}} - \frac{\mu^2}{2R}$$

The corresponding action:

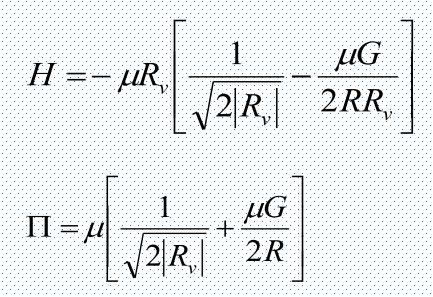
$$S = -\mu \int dT \left(\sqrt{1 - R_T^2} - \frac{\mu G}{2R} \right)$$

- we can now go from $T \rightarrow v$ (infalling time coordinate)
- and derive equations of motion
- Exact expressions cumbersome

We are interested in behavior near the singularity, i.e. $R \rightarrow 0$

$$R_{v} \approx -\frac{1}{2} \left(\frac{\mu G}{R}\right)^{2}$$

Hamiltonian in the near singularity limit : $R \rightarrow 0$



$\Pi \rightarrow$ momentum corresponding to the coordinate R

Hamiltonian in terms of momentum:

Non-local Hamiltonian!

$$H = \frac{-R}{G} \left[1 - \frac{2\Pi R}{\mu^2 G} \right]^{-1} + \frac{\mu^2 G}{2R}$$

Radical Conservatism

Use the things that we understand well

And push them as far as we can...

We might get a glimpse at how the ultimate theory should look like

We are tempted to write down Schrodinger equation:

$$H\psi = i\hbar \frac{\partial \psi}{\partial v}$$

But Wheeler-de Witt says:

$H\psi = 0$

No global time in gravity!

Wheeler-de Witt:

 $H_{tot}\psi_{tot}=0$

Decompose the Hamiltonin:

 $H_{tot} = H_{svs} + H_{obs}$

Introduce observer's time:

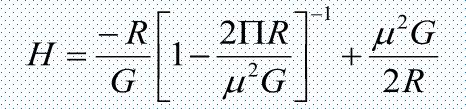
 $H_{obs}\psi_{obs} = i\hbar \frac{\partial \psi_{obs}}{\partial t}$

Assume the wave function separates:

 $\Psi_{tot} = \Psi_{svs} \times \Psi_{obs}$

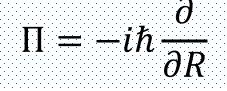
Schrodinger equation:

 $H_{sys}\psi_{sys} = i\hbar \frac{\partial \psi_{sys}}{\partial t}$ Observer's time

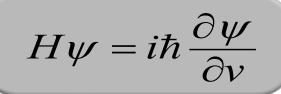


This Hamiltonian governs the evolution of the system as $R \rightarrow 0$

Quantization:

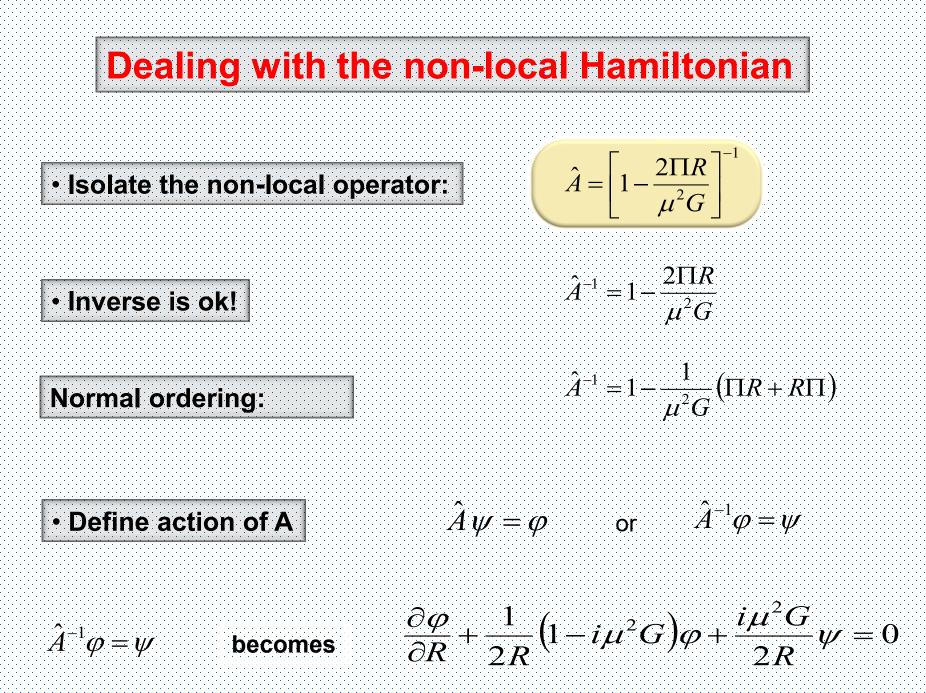


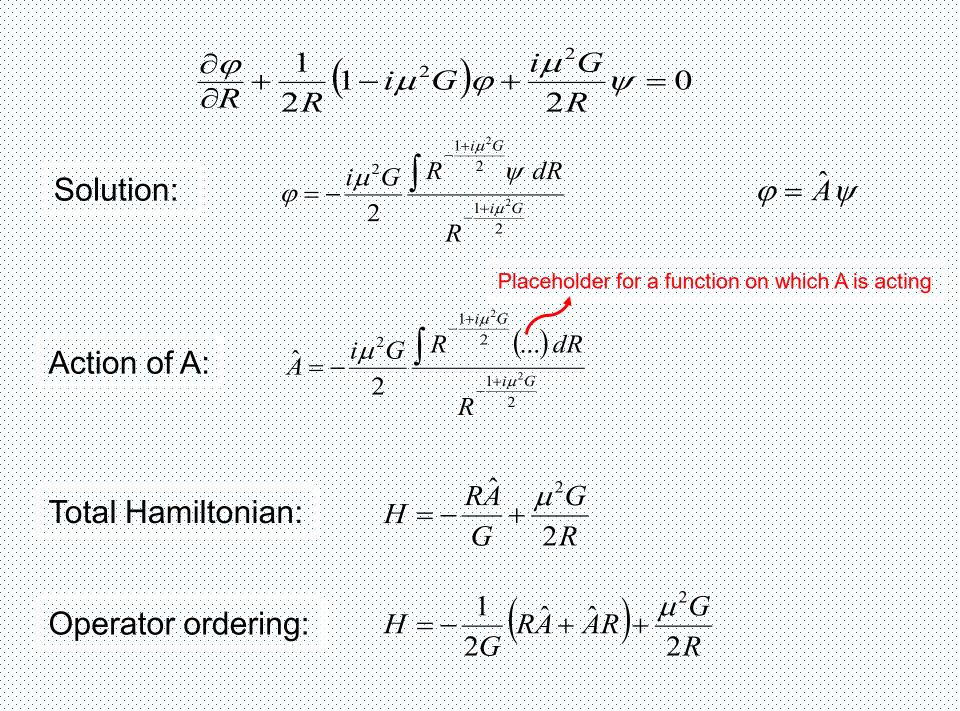
Write down Schrodinger equation:



Wave function for the collapsing shell

$$\mathbf{v} = \boldsymbol{\psi}(\boldsymbol{R}, \boldsymbol{v})$$





Hamiltonian:

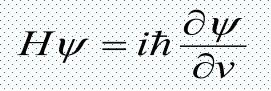
 $H = -\frac{1}{2G} \left(R\hat{A} + \hat{A}R \right) + \frac{\mu^2 G}{2R}$

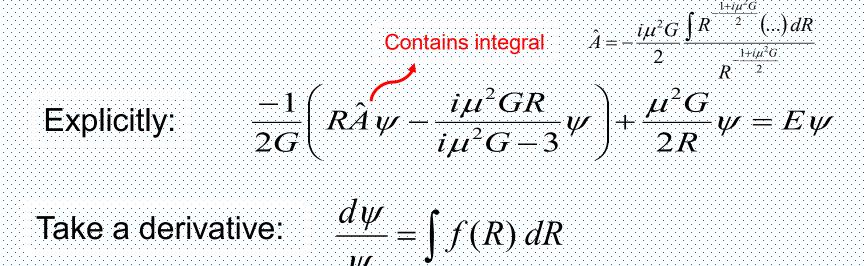
Ansatz:

 $\psi(R,v) = \psi(R)e^{iEv/\hbar}$

i.e. stationary solutions

Schrodinger equation:

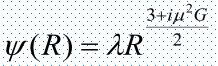




Keeping only the leading terms in $R \rightarrow 0$ limit:

$$\ln\psi\approx\int\frac{3+i\mu^2G}{2R}\,dR$$

Solution:



Probability density:

 $\left|\psi(R)\right|^2 = \lambda^2 R^3$

Obviously non-singular in $R \rightarrow 0$ limit!

Comparison with the hydrogen atom

Hydrogen ground state wave function:



Collapsing shell case:

$$|\psi(R)|^2 = const R^3 \xrightarrow{R \to 0} 0$$

The shell has zero probability to be found at R =0

Quantum effects might help resolving singularities in gravity

Solving Schrodinger equation for gravitational collapse we learned:

- 1. Quantum effects might be able to remove the singularity
- 2. Physics becomes non-local in strong gravity regime

THANK YOU

