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Black Holes 

❖ Most interesting and intriguing objects in our Universe

❖ Singularity and horizon are roots of many problems

❖ Full QM treatment might resolve some of them

❖ A lot of words and nice pictures (complementarity, firewalls…)

❖ Very few concrete calculations   
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Motivation



• Singularities – some basic facts

• Gravitational collapse – infalling

observer - Schrodinger equation 

• Non-local equation as R→0

• Non-singular wave function 

• Quantization can remove singularities!

Outline





Questions that need clear answer:

1. True singularity of the space-time?

2. We are extrapolating our theory beyond its region 

of validity?
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• Consequence: atom can’t exist classically 

• Electron would spiral down in a fraction of a second



• Quantization fixes the singularity and saves the atom 

Hydrogen atom ground state wave function:  
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• Quantization can perhaps do the same in gravity 



Benefits?Benefits?

What do we gain by removing singularities from gravity? 

P(r)=?
ε(r)=?

M(r) =?



• Black hole singularity makes the space-time incomplete 

• Infalling observer reaches it in finite proper time 

• Removing the singularity makes the space-time complete 



Standard Penrose diagram for evaporating black hole

• Σ1 is the Cauchy surface but Σ2 is not since its past domain of 

dependence does not include the black hole region (which disappears)

• If we remove the singularity, the problem will perhaps be solved  

Evolution is not unitary!



If singularity never forms, then the horizon can’t be a global event horizon! 

It could trap light for a while, but when enough mass is lost to radiation, 

the light will be released out!

• Quantum mechanical effects may turn the singularity into                       

a regular region of strong gravity



• The original black hole solution is Schwarzschild

• It represents a point of view of a remote static observer

The Setup
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Question we explore:

Quantum aspects of gravitational collapse in the foliation of 

an infalling observer  

• However, we want to study the process of collapse from a 

point of view of an observer who can see past the horizon

• i.e. an infalling observer   

• Classically, he can reach singularity in finite time 

• and witness what is going on there



The collapsing spherical shell of matter is represented 

by an infinitely thin shell of mass M and radius R(t)

• We work in  Eddington-Finkelstein ingoing coordinates (t,r) → (v,r)

The Setup
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• Metric is non-singular at the horizon
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• Metric outside the shell, i.e. for r > R(v), is  Eddington-Finkelstein 

• Metric inside the shell, i.e. for r < R(v), is by Birkhoff's theorem flat

The Setup
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Use Gauss-Codazzi method to find conserved quantity:
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This quantity contains:

• rest mass of the shell µ=4πσR2 , σ is the mass per unit area

• kinetic energy represented by Rτ ≡∂R/∂T 

• gravitational self-energy µ2/(2R)

Actually, M is the total relativistic energy of the system 

We identify M with the Hamiltonian of the system
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The corresponding action:

• we can now go from T → v (infalling time coordinate)

• and derive equations of motion 

We are interested in behavior near the singularity, i.e. 

Exact expressions cumbersome 
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Hamiltonian in the near singularity limit :

→ momentum corresponding to the coordinate R

Hamiltonian in terms of momentum:  
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Non-local Hamiltonian! 



The Setup
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We are tempted to write down Schrodinger equation:  

v
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But Wheeler-de Witt says:  

No global time in gravity!  
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Wheeler-de Witt:

Decompose the Hamiltonin:

Introduce observer’s time:

Assume the wave function 

separates:

Schrodinger equation:

Observer’s time



This Hamiltonian governs the evolution of the system as

Write down Schrodinger equation:  
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Wave function for the collapsing shell



Dealing with the non-local Hamiltonian

• Isolate the non-local operator:

• Inverse is ok!

Normal ordering:

• Define action of A
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Total Hamiltonian:

Operator ordering:
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Take a derivative:

Hamiltonian:
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Obviously non-singular in R → 0 limit!



Hydrogen ground state wave function:  

Collapsing shell case:

The shell has zero probability to be found at R =0 
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Comparison with the hydrogen atomComparison with the hydrogen atom



Conclusions

Solving Schrodinger equation for gravitational collapse

we learned:

1. Quantum effects might be able to remove the singularity

2. Physics becomes non-local in strong gravity regime



THANK YOU
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