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Recent developments

Marinko Timotijevi¢, Filip D. Jevti¢, R. Z,

Polytopality of simple games, arXiv, September 2023.
Simple game G = (P,T)

[ C 2P the set of wining coalitions

K := 2P\ T is the simplicial complex of losing coalitions

Bier sphere Bier(G) = Bier(K) :== K xa K°
Canonical fan Fan(I") = Fan(K).



Theorem 1

Theorem 1. Let K C 2l be a proper simplicial complex such
that Vert(K) = [n]. Then I = 2"l \ K is a roughly weighted
simple game with all weights strictly positive if and only if the
canonical fan Fan(I") of I is pseudo-polytopal in the sense that
it refines the normal fan of a convex polytope.



Theorem 1

Theorem 1. Let K C 2l be a proper simplicial complex such
that Vert(K) = [n]. Then I = 2"l \ K is a roughly weighted
simple game with all weights strictly positive if and only if the
canonical fan Fan(I") of I is pseudo-polytopal in the sense that
it refines the normal fan of a convex polytope.

A simple game (P,T), where K = 2"\ T is the collection of losing
coalitions, is roughly weighted if there exist strictly positive real
numbers w = (wy, ..., w,) and a positive real number g (called
the quota) such that for each X € 2°

wiX)=> wi<qg = XeK (1)
iex
wiX)=> wi>q = XeTl (2)

ieX



Theorem 2

Theorem 2. All Bier spheres with up to ten vertices are
polytopal. There are 88 non-threshold complexes on 5
vertices, and 48 corresponding non-isomorphic Bier spheres all
polytopal. An example of such a sphere is Bier(Mdb) where
Mab is the minimal triangulation of the Mobius band.

TV

Figure: Triangulated Mébius band as a dual of a b-cycle.




Known results

It is known [JTZ19] [JZ23] that the Bier spheres of threshold
complexes (weighted majority games) are polytopal.
® All simplicial 3-spheres with up to 7 vertices are polytopal.

® The Griinbaum-Sreedharan sphere and the Barnette
sphere are the only two 3-spheres with 8 vertices which
are non-polytopal.

® The classification of 3-spheres with 9 vertices into
polytopal and non-polytopal spheres, started by Altshuler
and Steinberg, completed by Altshuler, Bokowski, and
Steinberg, see [Lutz08] for the references.

® The classification of 3-spheres with 10 vertices (open)!?



Zk(X,A) = (X, A)X

Let (X, A) be a pair of spaces and let K be an abstract
simplicial complex, K C 20"

The associated Polyhedral Product
(generalized moment-angle complex, K-power) is the space,

(X, A = Zk(X,A) = U (XA = U (IX*]IIA) < X"

oceK oc€EK i€o Jjé¢o
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Let (X, A) be a pair of spaces and let K be an abstract
simplicial complex, K C 20"

The associated Polyhedral Product
(generalized moment-angle complex, K-power) is the space,

(X, A = Zk(X,A) = U (XA = U (IX*]IIA) < X"
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® Zi(D? S') moment-angle complex (toric topology);
® Zyk (D', S%) small cover;
® (CP>)X Davis—Januszkiewicz space, etc.

Victor M. Buchstaber, Taras E. Panov. Toric Topology,
A.M.S. 2015.
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Let (X, A) be a pair of spaces and let K be an abstract
simplicial complex, K C 20",

The associated Polyhedral Product
(generalized moment-angle complex, K-power) is the space,

Zk(X,A) = U (XA = U (I X x JTA) € X"
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Zk(X, A)

Let (X, A) be a pair of spaces and let K be an abstract
simplicial complex, K C 20",

The associated Polyhedral Product
(generalized moment-angle complex, K-power) is the space,

Zk(X,A) = U (XA = U (I X x JTA) € X"

oceK oceK ico jéo

For x = (x;) € X" let Ma(x) :=={i € [n] | x; ¢ A}.

Then
Zr(X,A) = {x € X" | Ma(x) € K}.



Ma(x):={i€[n]|x; ¢ A} Sa:=[n\Ma={j€[n]|x €A}.

Alan D. Taylor and William S. Zwicker. Simple Games: Desirability Relations,
Trading, Pseudoweightings. Princeton University Press, 1999.



Edmonds-Fulkerson bottleneck thm.

Bottleneck Extrema

Jack EpMoONDS AND D. R. FULKERSON
National Bureau of Standards, Washington, D.C. 20234, and
The RAND Corporation, 1700 Main Street, Santa Monica, California 90406
Communicated by W, T, Tutte
Received March 11, 1968

ABSTRACT

Let E be a finite set. Call a family of mutually noncomparable subsets of £ a clutter
on E. It is shown that for any clutter # on E, there exists a unique clutter % on E
such that, for any function / from E to real numbers,

min max f(x) = max min f(x).
Re# xeR Se¥ wzeS
Specifically, & cousists of the minimal subsets of E that have non-empty intersection

with every member of #. The pair (#, %) is called a blocking system on £. An algorithm
is described and several examples of blockings systems are discussed.



Bier sphere B(K, K°)

KxL={AWC|Ac K, Cel}.
Ksal={AWC|AeK,Celand ANC =(}.

K°={AC [m]| A°¢ K} s the Alexander dual of K .
Bier(K) = B(K,K°) :== K xp K°

is the associated Bier sphere.



Bottleneck theorem and discrete
Morse theory

R T = e mip ) = Fle) G)

Let K := 2"\ Aand L = K°:= 2"\ B and let

Bier(K) = K x5 K° =2 5"72 be the associated Bier sphere.
Then f : [n] — R (assumed to be 1-1) induces a perfect
(discrete) Morse function on Bier(K) with the critical cell in
dimension (n — 2) of the form (X, ¢, Y) € Bier(K) = K*a K°.

D. Joji¢, G. Panina, S. Vredica, R. Zivaljevic’. Generalized

chessboard complexes and discrete Morse theory.
Chebyshevskii Sbornik, 2020, Volume 21, Issue 2, 207-227.



Bier sphere B(K, K°)

If Vert(K) = [n] = {1,2,...n}, Vert(K°) = [A] = {1,2,...R}
then Vert(B(K, K°)) = [n] U [n] and
(A, B, C) € B(K, K°) is equivalent to

e [n] = AW BW C (disjoint union);

e Ac K and C := {k}rec € K®;

« 0+B#[n]



Alexander duality revisited

Alexander duality for generalized moment-angle complexes.
Proposition: (V. Welker, V. Gruji¢)
Zr(X,A) W Zko (X, A°) = X

Proof: For each x € X™ either Ma(x) € K or Mac(x) € K°,
but not both! Indeed, Ma(x) N Mac(x) = () and
Ma(x) U Mac(x) = [m].



Let | = [0,1], L

Similarly, for J = [—1,1]
JSO = [—1,0],./20 = [O7 1], /<0 = [_1,0), etc.

Question:

Zx (!, Ig%) N Zxo (1, 12%) = Z(K,K°) =7.
Proposition:
Z(K,K°) = U (L) > {338 % (I

(A,B,C)eB(K,K°)+

where B(K, K°)* := B(K, K°) U {(0,[n],0)}.



0Z(K,K°)=B(K, K°)

Proposition:

® B(K,K®) is a triangulation of S"~2;

° (K Ko) D= 1,
Z(K,K®) is a cubification (cubical complex) on = D"~1;
0Z(K,K®) is a quadrangulation (cubification) of S"—2.
0Z(K, K°) is the canonical cubification of B(K, K°).



0Z(K,K°)=B(K, K°)

1 _

13 12
3 2
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K = Vert(K) = {1,2,3} K° = Vert(K) = {1,2,3}

Bier(K, K°) = {12,32,31,21, 23,13}



0Z(K,K°)=B(K, K°)

B(K,K°) = {12,32,31,21, 23,13}

2Kk = U () x 3 x (L
(AB,C)EB(K,KO)  °

)<



Examples of Zk(/, I ) N Zxeo(1, I

B S0

w B % E &
Lol foof o0l Joo T T

Dave Bayer. Monomial ldeals and Duality. Barnard College
and M.S.R.l. bayer@math.columbia.edu, February 8, 1996
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B S0

w B % E &
Lol foof o0l Joo T T

Dave Bayer. Monomial ldeals and Duality. Barnard College
and M.S.R.l. bayer@math.columbia.edu, February 8, 1996
Ezra Miller, Bernd Sturmfels. Combinatorial Commutative

Algebra. Springer, 2004.

Examples of Zk(/, lg%) N Zxo(1, 1.1)




Figure 9: Corners and noncorners in 3 dimensions.
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Figure 10: A corner with no homology, in 4 dimensions.
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Figure 11: An observer’s view of a corner.



Simplicial Steinitz problem and Bier
spheres

The problem of deciding if a given triangulation of a sphere is
realizable as the boundary sphere of a simplicial, convex
polytope is known as the “Simplicial Steinitz problem”

G. Ewald: Combinatorial Convexity and Algebraic Geometry,
volume 168 of Graduate Texts in Mathematics.
Springer-Verlag, 1996.

Vast majority of Bier spheres B(K, K°) are “non-polytopal”, in
the sense that they are not combinatorially isomorphic to the
boundary of a convex polytope.
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Braid arrangement

The braid arrangement is the arrangement of hyperplanes
Braid,, = {HiJ}1§i<j§n in HO where
Hyo={xeR"|x+---+x,=0} =2=R"/(1,...,1)R and
H;j = {x|x; —x; = 0}.

The hyperplanes H;; subdivide the space Hy into the
polyhedral cones

C7r = {X = HO ‘ Xﬂ(l) < X7r(2) << Xﬂ'(”)}

labeled by permutations 7 € S,,.

The cones C,, together with their faces, form a complete
simplicial fan in Hy, called the braid arrangement fan.



The preposet <+ braid cone
dictionary

3.4 THE DICTIONARY

Let us say that a braid cone is a polyhedral cone in the space R™/(1,...,1)R ~
R"~! given by a conjunction of inequalities of the form x; — x; > 0. In other
words, braid cones are polyhedral cones formed by unions of Weyl chambers or
their lower dimensional faces.

There is an obvious bijection between preposets and braid cones. For a preposet
Q on the set [n], let oo be the braid cone in the space R"/(1,...,1)R defined
by the conjunction of the inequalities x; < x; for all i <g j. Conversely, one
can always reconstruct the preposet @ from the cone og by saying that i <g j
whenever x; < x; for all points in o¢q.

3.3 PREPOSETS. EQUIVALENCE RELATIONS. AND POSETS

Recall that a binary relation R on a set X is a subset of R C X x X. A preposet
is a reflexive and transitive binary relation R, that is (x,2) € R for all z € X,
and whenever (z,y), (y,z) € R one has (x, z) € R. In this case we will often use
the notation  <pg y instead of (x.y) € R. Let us also write © <p y whenever
x =<gpyand x#uy.



The preposet <+ braid cone
dictionary

A. Postnikov, V. Reiner, and L. Williams. Faces of Generalized Permutohedra,

Documenta Mathematica, Vol. 13 (2008), 207-273.

PROPOSITION 3.5. Let the cones 0,0’ correspond to the preposets Q, Q" under
the above bijection. Then

(1) The preposet QU Q' corresponds to the cone o No’.

(2) The preposet Q is a contraction of Q" if and only if the cone o is a face
o'

(3) The preposets Q, Q' intersect properly if and only if the cones 0,0’ do.

(4) Q is a poset if and only if o is a full-dimensional cone, i.e., dimo = n—1.



(6)
(7)
(8)

9)
(10)

The preposet <+ braid cone
dictionary

The equivalence relation =¢ corresponds to the linear span Span(o) of o.
The poset Q/=q corresponds to a full-dimensional cone inside Span(og).
The preposet Q is connected if and only if the cone o is pointed.

If Q is a poset, then the minimal set of inequalities describing the cone
ois {x; < x5 | i <qj}. (These inequalities associated with covering
relations in Q are eractly the facet inequalities for o.)

Q is a tree-poset if and only if o is a full-dimensional simplicial cone.

For w € &, the cone o contains the Weyl chamber C\, if and only if Q
is a poset and w is its linear extension, that is w(l) <g w(2) <g --- <q

w(n).



The preposet <+ braid cone
dictionary

According to Proposition 3.5, a full-dimensional braid cone o associated with
a poset () can be described in three different ways (via all relations in @, via
covering relations in @, and via linear extensions £(Q) of Q) as

o={x; <z;liZgjt={v; <z;|i<qgj}= U Cop.
weL(Q)

COROLLARY 3.6. A complete fan of braid cones (resp., pointed braid cones, sim-
plicial braid cones) in R™/(1,. .., 1)R corresponds to a complete fan of posets
(resp., connected posets, tree-posets) on [n].

For a generalized permutohedron P, define the wverter poset @, at a ver-
tex v € Vertices(P) as the poset on [n] associated with the normal cone
No(P)/(1,..., 1)R at the vertex v, as above.

COROLLARY 3.7. For a generalized permutohedron (resp., simple generalized
permutohedron) P, the collection of vertex posets {Q, | v € Vertices(P)} is a
complete fan of posets (resp., tree-posets).



The preposet <+ braid cone
dictionary

Thus normal fans of generalized permutohedra correspond to certain complete
fans of posets, which we call polytopal. In [M-W’06], the authors call such fans
submodular rank tests, since they are in bijection with the faces of the cone of
submodular functions. That cone is precisely the deformation cone we discuss

in the Appendix.

COROLLARY 3.9. Let P be a generalized permutohedron in R™, and v €
Vertices(P) be a vertexr. For w € &,,, one has Up(w) = v whenever the normal
cone Ny (P) contains the Weyl chamber C,,. The preimage \Ilz,l(u) C 6, of a
vertex v € Vertices(P) is the set L(Qy) of all linear extensions of the vertex

poset Q.



Canonical fan Fan(K)

Let 7 = (Ay, B, Ay) € B(K, K°). Following [4] and [10], the
associated braid cone is

x; < x; for each (i,j) € Ay x BUB x Ay,

Cone(1) = {x € Hy | x; = x; for each (i,j) € B x B}.

Theorem: Let K C 2l be a simplicial complex. Then the
collection of convex cones

Fan(K) = { Cone(=+)}reB(k ko) (4)

is a complete simplicial fan in
Ho ={x € R" | x; + - - -+ x, = 0}, referred to as the
canonical fan associated to K.



Canonical fan Fan(K)

Moreover, the face poset FaceFan(K) is isomorphic to the
(extended) face poset

Face(B(K,K°)") := Face(B(K,K°)) U {0}

of the Bier sphere B(K, K°).

The construction of the canonical fan is faithful in the sense
that if Fan(K1) = Fan(K3) then K; = K.

Remark:

Fan(K) &8 Z, (R, Reo) N Zke (R, Rsp)



0Z(K,K°)=B(K, K°)

B(K,K°) = {12,32,31,21, 23,13}

2Kk = U () x 3 x (L
(AB,C)EB(K,KO)  °

)<



Corollary: Each Bier sphere Bier(K), defined as a canonical
triangulation of a (n — 2) sphere $"2 associated to an
abstract simplicial complex K C 2["l, admits a starshaped
embedding in R™1.

Figure: The 3-dimensional cube as the Van Kampen-Flores
polytope €4.



Glossary
B(K,K°) = K %a K°, the Bier sphere of K, is a combinatorial
object (deleted join of two simplicial complexes).
Fan(K), the canonical of K, is a complete, simplicial fan in
Hoy = R"!, associated to a simplicial complex K C 2",
Ris(B(K, K°)), canonical starshaped realization of B(K, K°).
Star(K) the body whose boundary is the sphere
Ris(B(K, K?)).
Q, is a universal, (n — 1)-dimensional convex polytope (the

Van Kampen-Flores polytope) which is equal, as a convex
body, to Star(K) for each Bier sphere of maximal volume.




Bier spheres of maximal volume

Proposition: Assume that K C 2I"! is a simplicial complex
and let Star(K) C Hyp be the associated starshaped body. Let
B ¢ K be a minimal non-face of K in the sense that

(Vie B)B\{i} € K, and let K = KU {B}. Let C =[n]\ B
the complement of B. Then
Vol (Star(K')) — Vol (Start(K)) = V(K', K) = (|C| — |B]) Vol .
The following relations are an immediate consequence
V(K',K) >0, if |B] <
V(K',K) =0, if |B| =

V(K',K) <0, if |B| > =

NISNISINIS



Bier spheres of maximal volume

Theorem: If n =2m + 1 is odd the unique Bier sphere of
maximal volume is B(K, K°) where

K:<§[”1>:{5c[n]||5|gm}. (5)

m

If n=2mis even a Bier sphere B(K, K°) is of maximal
volume if and only if

(SELJQKQ<£1> (6)

A Bier sphere B(K, K°) is of minimal volume if and only if
either K = {0} or K is the boundary of the simplex A,
K =00y =20\ {[n]}.



Universal Bier polytope €2,

Corollary: For all Bier spheres Bier(K) of maximal volume,
the convex body Q, = Star(K) is unique and independent of
K. The body 2, is centrally symmetric. More explicitly

Q, = Conv(As U Vs) where Ay C Hy is the simplex spanned
by vertices §; := e — %(el +---+e,)and Vs := —As; = As is
the simplex spanned by §; = —¢;. The centrally symmetric

(n — 1)-dimensional convex body €, may be (informally)
referred to as the Van Kampen-Flores-Bier polytope in
dimension n — 1.




Balanced complexes and Van
Kampen-Flores polytope €2,

Theorem: (D. Joji¢, G. Panina, R.Z; Israel J. Math. (2021)) Let K C 2"l be a
simplicial complex and let K° be its Alexander dual. Let n = 2m and assume that K
is balanced in the sense that

( [n] )gKg([n]). @)

<m-1 <m

Then for each continuous map f : A"~1 — R"3 there exist disjoint faces F; € K and

F> € K° such that f(F) N f(F) # 0.

The importance of balanced complexes was noted even earlier.
In [Matousek, 2008] they were used as a source of examples of
non-polytopal triangulations of spheres while in [Bjorner et al.

(2004)] they provided examples of nearly neighborly Bier
spheres.



Connection with hypersimplices

Definition: A hypersimplex A, , with parameters n, r is
defined as the convex hull of all n-dimensional vectors, vertices
of the n-dimensional cube [0, 1]”, which belong to the
hyperplane x; +--- + x, = r.

Alternatively A, , = Newton(c,) can be described as the
Newton polytope of the elementary symmetric function o, of
degree r in n variables.



(Q,)° is a hypersimplex

Proposition: If n = 2k is even then Q35, = ANV is affine
isomorphic to the hypersimplex Ay k. If n = 2k + 1 then
is affine isomorphic to the convex hull

(Vi) A

23,41 = Conv{A € [0, 1)t | ’Z()\)’I

where Z(\) = {j | A; = 0} and W(\) = {j | ; = 1}.



Steinitz problem for Bier spheres

Theorem: Let F = Fan(K) be the radial fan arising from the
canonical starshaped realization of the associated Bier sphere
Bier(K). Then F is a normal fan of a convex polytope if and
only if the simplicial complex K admits a K-submodular
function. Moreover, there is a bijection between convex
realizations of Bier(K) with radial fan F and K-submodular
functions f.

Corollary: Bier sphere Bier(T,,<,) of a threshold complex
T, <v is isomorphic to the boundary sphere of a convex
polytope which can be realized as a polar dual of a generalized
permutohedron.



K-submodular functions, associated

to Bier(K, K°)

Definition: Let K C 2I"l be a simplicial complex and Bier(K)
the associated Bier sphere. A K-submodular function (K-wall
crossing function) is a function f : Vert(Bier(K)) — R such
that

f(c1) + f(e) + Ziexf(i) > Ljgvf(j) for each A-configuration
(9)

f(c1) + (@) + Zjexf(j) > Tiexf(i) for each V-configuration
(10)

f(c) + f(c2) >0 for each X-configuration.

(11)



K-submodular functions

YIXU{Cl,CQ}

/\Bier(K)

X]_:XU{C;[} XQZXU{CZ}

NZ

[A configuration]



K-submodular functions

Y :XU{Cl,C2}

Y

X1:XU{C1} X2:XU{C2}

\\\ /Bier(K)

[V configuration] X



K-submodular functions

Y =XU{c, o}

/ \\/Bier(K)

X1 =XU {Cl} //// X2 =XU {Cz}

X

[X configuration]



K-submodular functions

Definition: Let K C 2l be a simplicial complex and Bier(K)
the associated Bier sphere. A K-submodular function (K-wall
crossing function) is a function f : Vert(Bier(K)) — R such
that

f(c1) + f(c2) + Ziexf(i) > ng;yf(j) for each A-configuration
(12)

f(c1) + f(S) + Zjexf(j) > Tiexf(i) for each V-configuration
(13)

f(c2) + f(c) > 0 for each X-configuration.
(14)



Strong polytopality of Bier spheres

Theorem.([10]) Let F = Fan(K) be the radial fan arising
from the canonical starshaped realization of the associated
Bier sphere Bier(K). (Recall that F is refined by the braid
arrangement fan.) Then F is a normal fan of a convex
polytope if and only if the simplicial complex K admits a
K-submodular function. Moreover, there is a bijection between
convex realizations of Bier(K) with radial fan F and
K-submodular functions f.



Proposition. Let F be an essential complete simplicial fan in
R" and G be the N x n matrix whose rows are the rays of F.
Then the following are equivalent for any vector h € RV,
(I) The fan F is the normal fan of the polytope
Pn:={x € R" | Gx < h}.
(IT) For any two adjacent chambers R>oR and RS of F

with R\ {r} =S\ {s},

ahr + ﬁhs + Z fytht > 0, (15)
teRNS
where
ar+fBs+ Y wt=0 (16)
teRNS

is the unique (up to scaling) linear dependence with
a, 3 > 0 between the rays of RUS.



Strong polytopality of threshold
complexes

Recall that Ty, <, := {/ C [n] | u.(/) < v} is a threshold complex where
L= (h,h,...,In) is a (strictly positive) vector of weights such that 1 +---+ [, = 1.
Assuming (w.l.o0.g.) that u; (/) # v for each I C [n], the Alexander dual of K is

K® =Ty <1—v = Ty <1-v-

Corollary. ([4] and [10]) Bier(T,,<.) is isomorphic to the
boundary sphere of a convex polytope which can be realized as
a polar dual of a generalized permutohedron.



Proof (outline)

Construct a K-submodular function f : [n] U [n] — R where
[n] U [A] = Vert(Bier(K)). The function defined by

f(i)=0-v)i f()=vl (i,j=1,...,n) (17)

is indeed K-submodular for K = T,, ... The inequalities (12)
and (13), for the function f defined by (17), take the following
form

v (Y) > A=) (YS) (@ -v)u(X) < vuu(X9). (18)

However, in a threshold complex, both inequalities (18) hold
without any restrictions on a simplex X € K and a
non-simplex Y ¢ K. (For example the second inequality in
(18) is a consequence of p(X) < v and pu(X) >1—-v.)



Converse is also true!

Theorem. (February, 2023) Bier(K, K°) is strongly polytopal
(i.e. there exists a K-submodular function) if and only if K is
a threshold complex.

Proof by a direct construction of a weight distribution

L= (h,h,...,I,) € R} from a K-submodular function
f:[n]uln] — R.



Polyhedral products and generalized
Van Kampen-Flores theorems

Theorem: (D. Joji¢, G. Panina, R.Z; Israel J. Math.
(2021)) Let K C 2"l be a simplicial complex and let K° be its
Alexander dual. Let n = 2m and assume that K is balanced
in the sense that

(g ,E:]_ 1) CKC (S[HD . (19)

Then for each continuous map f : A"~ — R"3 there exist
disjoint faces F; € K and F, € K° such that
f(F1)ﬂf(F2)7é@.



Collectively unavoidable complexes

Definition: An ordered r-tuple £ = (Ki, ..., K,) of
subcomplexes of 2! is collectively r-unavoidable if for each
ordered collection (A;, ..., A,) of disjoint sets in [m] there
exists i such that A; € K.

Example: The pair (K, K°) is collectively unavoidable.

A complex K C 2l is by definition r-unavoidable if the r-tuple
(K,K,...,K) is collectively r-unavoidable.



Van Kampen-Flores type theorem for
collectively unavoidable complexes

Theorem A. K = (K;)[_; = (K, ..., K,) is a collectively
r-unavoidable family of subcomplexes of the N-dimensional
simplex Ay = 2N+l where r = p” is a power of a prime.

Assume that there exists k > 1 such that for each i
k—1 k
A c K c Al
where Ag\l,() is the k-dimensional skeleton of Ay.

Suppose that N > (r — 1)(d + 2).



Theorem A conclusion

Then for each continuous map f : Ay — RY, there exist
vertex-disjoint faces o1,...,0, of Ay such that

for)N---Nf(o,)#0D

and
01 € Ki,00 € Ky,...,0, € K,.

[JPZ-1] D. Joji¢, G. Panina, R. Zivaljevi¢, A Tverberg type
theorem for collectively unavoidable complexes, Israel J. Math.
2021



Collectively unavoidable complexes

and moment-angle complexes

Collectively unavoidable families K = (K;)/_; admit a
characterization in the language of generalized moment-angle
complexes.

Proposition: Let X be a topological space and {A;}/_; a
family of its subspaces which are complementary in the sense
that X = A; U A; for each i # j. Then if

K=(K)i_; = (Ki,...,K,) is a collectively r-unavoidable
family of subcomplexes of the N-dimensional simplex

Ay = 2N then

XN = Zy (X, AU ---U Zi (X, A (20)

Conversely, if (20) holds for each X and each family {A;}/_,
of complementary subspaces in X then K = (K;)/_; is a
collectively r-unavoidable family of simplicial complexes.



Proof of the Proposition
It follows from the definition that
Zi (X, A) = {x € XN | Mi(x) € K}
where M;(x) :={j € [N+ 1] | x; & A;}.
A; UA; = X for each i # j implies M;(x) N M;(x) = 0. By
collective unavoidability of K = (K;)/_,, for each x € XN+1

there exists i € [r] such that {M;(x) € K;}, and the relation
(20) is an immediate consequence.

Conversely, assume that I = (K;)!_; is not collectively
unavoidable. By definition there exist pairwise disjoint subsets
{M;}i_; of [N + 1] such that M; ¢ K; for each i € [r]. Let
X=[N+1]and let A, ;== [N+ 1]\ M;. Let x: [N+1] = X
be the identity map, (x; = i for each i € [N + 1]). Then,

x € XN\ | 2k (X, A
i=1



A canonical family of complementary
sets

Let W =V, [; = Vi1;[0,1]; be the Kowalski m-hedgehog
space obtained by gluing m “spikes” along 0. Let W, are its
(m — 1)-hedgehog subspaces obtained by removing the spike /.

Then {W;} is a family of complementary set and if
K=(K)i_, = (Ki,...,K,) is a collectively r-unavoidable
family of complexes then

WN = Z, (W, W)U -+ U Zi (W, W,). (21)



A central role is played by high connectivity results as
illustrated by:

Theorem: Suppose that K = (K)/_; = (Ki,...,K,) is a
collectively r-unavoidable family of subcomplexes of 21™
Then the associated deleted join

De/JOIn(’C) = Kl XA K2 XA KA K,

is (m — r — 1)-connected.

D. Joji¢, I. Nekrasov, G. Panina, R. Zivaljevi¢, Alexander r-tuples and Bier complexes,

Publ. Inst. Math. (Beograd) (N.S.) 104(118) (2018), 1-22.

Recall that DelJoin(K) is a generalized chessboard
complex.



Connection with polyhedral products

Theorem:
Bier(K) := K xa K° ~ Z1((X; A) N Zx+(X; B).

where X = [0,1], A= [0,1/2], B =[1/2,1] and
Zr(X,A) = Zx(X,A)\ {1/2}™ is the “reduced”

moment-angle complex.



Connection with moment-angle
complexes

Theorem:
Kisa - sa K~ Zig (W, Wo) N -0 Zi (W W)

where W = V[0, 1] is the Kowalski m-hedgehog space and
W; are its (m — 1)-hedgehog subspaces. The reduced

moment-angle complex is obtained by removing the point
(0,0,...,0).






