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Recent developments

• Marinko Timotijević, Filip D. Jevtić, R. Ž,
Polytopality of simple games, arXiv, September 2023.

• Simple game G = (P, Γ)
Γ ⊆ 2P the set of wining coalitions
K := 2P \ Γ is the simplicial complex of losing coalitions
• Bier sphere Bier(G) = Bier(K ) := K ∗∆ K ◦
• Canonical fan Fan(Γ) = Fan(K ).
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Theorem 1
Theorem 1. Let K ( 2[n] be a proper simplicial complex such
that Vert(K ) = [n]. Then Γ = 2[n] \ K is a roughly weighted
simple game with all weights strictly positive if and only if the
canonical fan Fan(Γ) of Γ is pseudo-polytopal in the sense that
it refines the normal fan of a convex polytope.

A simple game (P, Γ), where K = 2P \ Γ is the collection of losing
coalitions, is roughly weighted if there exist strictly positive real
numbers w = (w1, . . . , wn) and a positive real number q (called
the quota) such that for each X ∈ 2P

w(X ) =
∑
i∈X

wi < q ⇒ X ∈ K (1)

w(X ) =
∑
i∈X

wi > q ⇒ X ∈ Γ (2)
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Theorem 2
Theorem 2. All Bier spheres with up to ten vertices are
polytopal. There are 88 non-threshold complexes on 5
vertices, and 48 corresponding non-isomorphic Bier spheres all
polytopal. An example of such a sphere is Bier(Möb) where
Möb is the minimal triangulation of the Möbius band.

Figure: Triangulated Möbius band as a dual of a 5-cycle.



Known results

It is known [JTZ19] [JZ23] that the Bier spheres of threshold
complexes (weighted majority games) are polytopal.
• All simplicial 3-spheres with up to 7 vertices are polytopal.
• The Grünbaum-Sreedharan sphere and the Barnette

sphere are the only two 3-spheres with 8 vertices which
are non-polytopal.
• The classification of 3-spheres with 9 vertices into

polytopal and non-polytopal spheres, started by Altshuler
and Steinberg, completed by Altshuler, Bokowski, and
Steinberg, see [Lutz08] for the references.
• The classification of 3-spheres with 10 vertices (open)!?



ZK (X ,A) = (X ,A)K

Let (X ,A) be a pair of spaces and let K be an abstract
simplicial complex, K ⊆ 2[n].
The associated Polyhedral Product
(generalized moment-angle complex, K -power) is the space,

(X ,A)K = ZK (X ,A) =
⋃
σ∈K

(X ,A)σ =
⋃
σ∈K

(
∏
i∈σ

X×
∏
j /∈σ

A) ⊆ X n.

• ZK (D2, S1) moment-angle complex (toric topology);
• ZK (D1, S0) small cover;
• (CP∞)K Davis–Januszkiewicz space, etc.

Victor M. Buchstaber, Taras E. Panov. Toric Topology,
A.M.S. 2015.
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ZK (X ,A)

MA(x) := {i ∈ [n] | xi /∈ A} SA := [n]\MA = {j ∈ [n] | xi ∈ A} .

Alan D. Taylor and William S. Zwicker. Simple Games: Desirability Relations,

Trading, Pseudoweightings. Princeton University Press, 1999.



Edmonds-Fulkerson bottleneck thm.

 

Figure: Edmonds-Fulkerson bottleneck thm.



Bier sphere B(K ,K ◦)

K ∗ L = {A ] C | A ∈ K ,C ∈ L} .

K ∗∆ L = {A ] C | A ∈ K ,C ∈ L and A ∩ C = ∅} .

K ◦ = {A ⊂ [m] | Ac /∈ K} is the Alexander dual of K .

Bier(K ) = B(K ,K ◦) := K ∗∆ K ◦

is the associated Bier sphere.



Bottleneck theorem and discrete
Morse theory

min
A∈A

max
x∈A

f (x) = max
B∈B

min
x∈B

f (x) = f (c) (3)

Let K := 2[n] \ A and L = K ◦ := 2[n] \ B and let
Bier(K ) = K ∗∆ K ◦ ∼= Sn−2 be the associated Bier sphere.
Then f : [n]→ R (assumed to be 1–1) induces a perfect
(discrete) Morse function on Bier(K ) with the critical cell in
dimension (n− 2) of the form (X , c ,Y ) ∈ Bier(K ) = K ∗∆ K ◦.

D. Jojić, G. Panina, S. Vrećica, R. Živaljević. Generalized
chessboard complexes and discrete Morse theory.
Chebyshevskii Sbornik, 2020, Volume 21, Issue 2, 207–227.



Bier sphere B(K ,K ◦)

If Vert(K ) = [n] = {1, 2, . . . n},Vert(K ◦) = [n̄] = {1̄, 2̄, . . . n̄}
then Vert(B(K ,K ◦)) = [n] ∪ [n̄] and
(A,B,C) ∈ B(K ,K ◦) is equivalent to
• [n] = A ] B ] C (disjoint union);
• A ∈ K and C̄ := {k̄}k∈C ∈ K ◦;
• ∅ 6= B 6= [n].



Alexander duality revisited

Alexander duality for generalized moment-angle complexes.

Proposition: (V. Welker, V. Grujić)

ZK (X ,A) ] ZK◦(X ,Ac) = Xm .

Proof: For each x ∈ Xm either MA(x) ∈ K or MAc (x) ∈ K ◦,
but not both! Indeed, MA(x) ∩MAc (x) = ∅ and
MA(x) ∪MAc (x) = [m].



ZK (I , I61
2
) ∩ ZK◦(I , I>1

2
)

Let I = [0, 1], I6 1
2

:= [0, 12 ], I> 1
2

:= [12 , 1], I< 1
2

:= [0, 12), etc.

Similarly, for J = [−1, 1]
J60 := [−1, 0], J>0 := [0, 1], I<0 := [−1, 0), etc.
Question:

ZK (I , I6 1
2
) ∩ ZK◦(I , I> 1

2
) =: Z (K ,K ◦) =? .

Proposition:

Z (K ,K ◦) =
⋃

(A,B,C)∈B(K ,K◦)+
(I> 1

2
)A × {12}

B × (I6 1
2
)C .

where B(K ,K ◦)+ := B(K ,K ◦) ∪ {(∅, [n], ∅)}.



∂Z (K ,K ◦)∼=B(K ,K ◦)

Proposition:
• B(K ,K ◦) is a triangulation of Sn−2;
• Z (K ,K ◦) ∼= Dn−1;
• Z (K ,K ◦) is a cubification (cubical complex) on ∼= Dn−1;
• ∂Z (K ,K ◦) is a quadrangulation (cubification) of Sn−2.
• ∂Z (K ,K ◦) is the canonical cubification of B(K ,K ◦).



∂Z (K ,K ◦)∼=B(K ,K ◦)

K = Vert(K ) = {1, 2, 3} K ◦ = Vert(K ) = {1̄, 2̄, 3̄}

Bier(K ,K ◦) = {12̄, 32̄, 31̄, 21̄, 23̄, 13̄}
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Examples of ZK (I , I61
2
)∩ZK◦(I , I>1

2
)

Dave Bayer. Monomial Ideals and Duality. Barnard College
and M.S.R.I. bayer@math.columbia.edu, February 8, 1996

Ezra Miller, Bernd Sturmfels. Combinatorial Commutative
Algebra. Springer, 2004.
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Simplicial Steinitz problem and Bier
spheres

The problem of deciding if a given triangulation of a sphere is
realizable as the boundary sphere of a simplicial, convex
polytope is known as the “Simplicial Steinitz problem”
G. Ewald: Combinatorial Convexity and Algebraic Geometry,
volume 168 of Graduate Texts in Mathematics.
Springer-Verlag, 1996.
Vast majority of Bier spheres B(K ,K ◦) are “non-polytopal”, in
the sense that they are not combinatorially isomorphic to the
boundary of a convex polytope.
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Braid arrangement

The braid arrangement is the arrangement of hyperplanes
Braidn = {Hi ,j}1≤i<j≤n in H0 where
H0 := {x ∈ Rn | x1 + · · ·+ xn = 0} ∼= Rn/(1, . . . , 1)R and
Hi ,j := {x | xi − xj = 0}.
The hyperplanes Hi ,j subdivide the space H0 into the
polyhedral cones

Cπ := {x ∈ H0 | xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)}

labeled by permutations π ∈ Sn.
The cones Cπ, together with their faces, form a complete
simplicial fan in H0, called the braid arrangement fan.



The preposet ↔ braid cone
dictionary



The preposet ↔ braid cone
dictionary

A. Postnikov, V. Reiner, and L. Williams. Faces of Generalized Permutohedra,

Documenta Mathematica, Vol. 13 (2008), 207–273.
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dictionary



Canonical fan Fan(K )

Let τ = (A1,B,A2) ∈ B(K ,K ◦). Following [4] and [10], the
associated braid cone is

Cone(τ) = {x ∈ H0 |
xi ≤ xj for each (i , j) ∈ A1 × B ∪ B × A2,
xi = xj for each (i , j) ∈ B × B} .

Theorem: Let K ( 2[n] be a simplicial complex. Then the
collection of convex cones

Fan(K ) = {Cone(4τ )}τ∈B(K ,K◦) (4)

is a complete simplicial fan in
H0 = {x ∈ Rn | x1 + · · ·+ xn = 0}, referred to as the
canonical fan associated to K .



Canonical fan Fan(K )

Moreover, the face poset FaceFan(K ) is isomorphic to the
(extended) face poset

Face(B(K ,K ◦)+) := Face(B(K ,K ◦)) ∪ {∅}

of the Bier sphere B(K ,K ◦).
The construction of the canonical fan is faithful in the sense
that if Fan(K1) = Fan(K2) then K1 = K2.
Remark:

Fan(K ) flattening←→ ZK (R,R60) ∩ ZK◦(R,R>0)
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Corollary: Each Bier sphere Bier(K ), defined as a canonical
triangulation of a (n − 2) sphere Sn−2 associated to an
abstract simplicial complex K ( 2[n], admits a starshaped
embedding in Rn−1.

Figure: The 3-dimensional cube as the Van Kampen-Flores
polytope Ω4.



Glossary
B(K ,K ◦) = K ∗∆ K ◦, the Bier sphere of K , is a combinatorial
object (deleted join of two simplicial complexes).
Fan(K ), the canonical of K , is a complete, simplicial fan in
H0 ∼= Rn−1, associated to a simplicial complex K ( 2[n].
R±δ(B(K ,K ◦)), canonical starshaped realization of B(K ,K ◦).
Star(K ) the body whose boundary is the sphere
R±δ(B(K ,K ◦)).
Ωn is a universal, (n − 1)-dimensional convex polytope (the
Van Kampen-Flores polytope) which is equal, as a convex
body, to Star(K ) for each Bier sphere of maximal volume.

Figure: The 3-dimensional cube as the Van Kampen-Flores
polytope Ω4.



Bier spheres of maximal volume
Proposition: Assume that K ( 2[n] is a simplicial complex
and let Star(K ) ⊂ H0 be the associated starshaped body. Let
B 6∈ K be a minimal non-face of K in the sense that
(∀i ∈ B)B \ {i} ∈ K , and let K ′ = K ∪ {B}. Let C = [n] \ B
the complement of B. Then

Vol (Star(K ′))− Vol (Start(K )) = V (K ′,K ) = (|C | − |B|)Vol0 .

The following relations are an immediate consequence

V (K ′,K ) > 0, if |B| < n
2

V (K ′,K ) = 0, if |B| = n
2

V (K ′,K ) < 0, if |B| > n
2



Bier spheres of maximal volume
Theorem: If n = 2m + 1 is odd the unique Bier sphere of
maximal volume is B(K ,K ◦) where

K =
(

[n]
≤ m

)
= {S ⊂ [n] | |S| ≤ m} . (5)

If n = 2m is even a Bier sphere B(K ,K ◦) is of maximal
volume if and only if(

[n]
≤ m − 1

)
⊆ K ⊆

(
[n]
≤ m

)
. (6)

A Bier sphere B(K ,K ◦) is of minimal volume if and only if
either K = {∅} or K is the boundary of the simplex ∆[n],
K = ∂∆[n] = 2[n] \ {[n]}.



Universal Bier polytope Ωn

Corollary: For all Bier spheres Bier(K ) of maximal volume,
the convex body Ωn = Star(K ) is unique and independent of
K . The body Ωn is centrally symmetric. More explicitly
Ωn = Conv(∆δ ∪∇δ) where ∆δ ⊂ H0 is the simplex spanned
by vertices δi := ei − 1

n(e1 + · · ·+ en) and ∇δ := −∆δ = ∆δ̄ is
the simplex spanned by δ̄i = −δi . The centrally symmetric
(n − 1)-dimensional convex body Ωn may be (informally)
referred to as the Van Kampen-Flores-Bier polytope in
dimension n − 1.



Balanced complexes and Van
Kampen-Flores polytope Ωn

Theorem: (D. Jojić, G. Panina, R.Ž; Israel J. Math. (2021)) Let K ⊂ 2[n] be a
simplicial complex and let K◦ be its Alexander dual. Let n = 2m and assume that K
is balanced in the sense that ( [n]

≤ m − 1
)
⊆ K ⊆

( [n]
≤ m
)
. (7)

Then for each continuous map f : ∆n−1 → Rn−3 there exist disjoint faces F1 ∈ K and

F2 ∈ K◦ such that f (F1) ∩ f (F2) 6= ∅.

The importance of balanced complexes was noted even earlier.
In [Matoušek, 2008] they were used as a source of examples of
non-polytopal triangulations of spheres while in [Björner et al.
(2004)] they provided examples of nearly neighborly Bier
spheres.



Connection with hypersimplices

Definition: A hypersimplex ∆n,r with parameters n, r is
defined as the convex hull of all n-dimensional vectors, vertices
of the n-dimensional cube [0, 1]n, which belong to the
hyperplane x1 + · · ·+ xn = r .
Alternatively ∆n,r = Newton(σr) can be described as the
Newton polytope of the elementary symmetric function σr of
degree r in n variables.



(Ωn)◦ is a hypersimplex

Proposition: If n = 2k is even then Ω◦2k = ∆ ∩∇ is affine
isomorphic to the hypersimplex ∆2k,k . If n = 2k + 1 then Ω◦n
is affine isomorphic to the convex hull

Ω◦2k+1
∼= Conv{λ ∈ [0, 1]2k+1 | (∀i)λi ∈ {0, 12 , 1} and

|Z (λ)| = |W (λ)| = k }

(8)
where Z (λ) = {j | λj = 0} and W (λ) = {j | λj = 1}.



Steinitz problem for Bier spheres

Theorem: Let F = Fan(K ) be the radial fan arising from the
canonical starshaped realization of the associated Bier sphere
Bier(K ). Then F is a normal fan of a convex polytope if and
only if the simplicial complex K admits a K -submodular
function. Moreover, there is a bijection between convex
realizations of Bier(K ) with radial fan F and K -submodular
functions f .
Corollary: Bier sphere Bier(TµL<ν) of a threshold complex
TµL<ν is isomorphic to the boundary sphere of a convex
polytope which can be realized as a polar dual of a generalized
permutohedron.



K -submodular functions, associated
to Bier(K ,K ◦)

Definition: Let K ( 2[n] be a simplicial complex and Bier(K )
the associated Bier sphere. A K-submodular function (K -wall
crossing function) is a function f : Vert(Bier(K ))→ R such
that

f (c1) + f (c2) + Σi∈X f (i) > Σj /∈Y f (̄j) for each Λ-configuration
(9)

f (c̄1) + f (c̄2) + Σj /∈X f (̄j) > Σi∈X f (i) for each V -configuration
(10)

f (c2) + f (c̄2) > 0 for each X -configuration.
(11)



K -submodular functions

[Λ configuration]

Y = X ∪ {c1, c2}

X1 = X ∪ {c1} X2 = X ∪ {c2}

X

Bier(K )



K -submodular functions

[V configuration]

Y = X ∪ {c1, c2}

X1 = X ∪ {c1} X2 = X ∪ {c2}

X

Bier(K )



K -submodular functions

[X configuration]

Y = X ∪ {c1, c2}

X1 = X ∪ {c1} X2 = X ∪ {c2}

X

Bier(K )



K -submodular functions

Definition: Let K ( 2[n] be a simplicial complex and Bier(K )
the associated Bier sphere. A K-submodular function (K -wall
crossing function) is a function f : Vert(Bier(K ))→ R such
that

f (c1) + f (c2) + Σi∈X f (i) > Σj /∈Y f (̄j) for each Λ-configuration
(12)

f (c̄1) + f (c̄2) + Σj /∈X f (̄j) > Σi∈X f (i) for each V -configuration
(13)

f (c2) + f (c̄2) > 0 for each X -configuration.
(14)



Strong polytopality of Bier spheres

Theorem.([10]) Let F = Fan(K ) be the radial fan arising
from the canonical starshaped realization of the associated
Bier sphere Bier(K ). (Recall that F is refined by the braid
arrangement fan.) Then F is a normal fan of a convex
polytope if and only if the simplicial complex K admits a
K -submodular function. Moreover, there is a bijection between
convex realizations of Bier(K ) with radial fan F and
K -submodular functions f .



Proposition. Let F be an essential complete simplicial fan in
Rn and G be the N × n matrix whose rows are the rays of F .
Then the following are equivalent for any vector h ∈ RN .
(I) The fan F is the normal fan of the polytope

Ph := {x ∈ Rn | Gx ≤ h}.
(II) For any two adjacent chambers R>0R and R>0S of F

with R \ {r} = S \ {s},

αhr + βhs +
∑

t∈R∩S
γtht > 0, (15)

where

αr + βs +
∑

t∈R∩S
γtt = 0 (16)

is the unique (up to scaling) linear dependence with
α, β > 0 between the rays of R ∪ S.



Strong polytopality of threshold
complexes

Recall that TµL<ν := {I ⊆ [n] | µL(I) < ν} is a threshold complex where

L = (l1, l2, . . . , ln) is a (strictly positive) vector of weights such that l1 + · · ·+ ln = 1.

Assuming (w.l.o.g.) that µL(I) 6= ν for each I ⊆ [n], the Alexander dual of K is

K◦ = TµL≤1−ν = TµL<1−ν .

Corollary. ([4] and [10]) Bier(TµL<ν) is isomorphic to the
boundary sphere of a convex polytope which can be realized as
a polar dual of a generalized permutohedron.



Proof (outline)
Construct a K -submodular function f : [n] ∪ [n̄]→ R where
[n] ∪ [n̄] = Vert(Bier(K )). The function defined by

f (i) = (1− ν)li f (̄j) = νlj (i , j = 1, . . . , n) (17)

is indeed K -submodular for K = TµL<ν . The inequalities (12)
and (13), for the function f defined by (17), take the following
form

νµL(Y ) > (1−ν)µL(Y c) (1−ν)µL(X ) < νµL(X c) . (18)

However, in a threshold complex, both inequalities (18) hold
without any restrictions on a simplex X ∈ K and a
non-simplex Y /∈ K . (For example the second inequality in
(18) is a consequence of µL(X ) < ν and µ(X c) > 1− ν.)



Converse is also true!

Theorem. (February, 2023) Bier(K ,K ◦) is strongly polytopal
(i.e. there exists a K -submodular function) if and only if K is
a threshold complex.

Proof by a direct construction of a weight distribution
L = (l1, l2, . . . , ln) ∈ Rn

+ from a K -submodular function
f : [n] ∪ [n̄]→ R.



Polyhedral products and generalized
Van Kampen-Flores theorems

Theorem: (D. Jojić, G. Panina, R.Ž; Israel J. Math.
(2021)) Let K ⊂ 2[n] be a simplicial complex and let K ◦ be its
Alexander dual. Let n = 2m and assume that K is balanced
in the sense that(

[n]
≤ m − 1

)
⊆ K ⊆

(
[n]
≤ m

)
. (19)

Then for each continuous map f : ∆n−1 → Rn−3 there exist
disjoint faces F1 ∈ K and F2 ∈ K ◦ such that
f (F1) ∩ f (F2) 6= ∅.



Collectively unavoidable complexes

Definition: An ordered r -tuple K = 〈K1, . . . ,Kr〉 of
subcomplexes of 2[m] is collectively r -unavoidable if for each
ordered collection (A1, . . . ,Ar) of disjoint sets in [m] there
exists i such that Ai ∈ Ki .
Example: The pair 〈K ,K ◦〉 is collectively unavoidable.
A complex K ⊆ 2[r ] is by definition r -unavoidable if the r -tuple
〈K ,K , . . . ,K 〉 is collectively r -unavoidable.



Van Kampen-Flores type theorem for
collectively unavoidable complexes

Theorem A. K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a collectively
r -unavoidable family of subcomplexes of the N-dimensional
simplex ∆N = 2[N+1], where r = pν is a power of a prime.
Assume that there exists k ≥ 1 such that for each i

∆(k−1)
N ⊆ Ki ⊆ ∆(k)

N

where ∆(k)
N is the k-dimensional skeleton of ∆N .

Suppose that N ≥ (r − 1)(d + 2).



Theorem A conclusion

Then for each continuous map f : ∆N → Rd , there exist
vertex-disjoint faces σ1, . . . , σr of ∆N such that

f (σ1) ∩ · · · ∩ f (σr) 6= ∅

and
σ1 ∈ K1, σ2 ∈ K2, . . . , σr ∈ Kr .

[JPZ-1] D. Jojić, G. Panina, R. Živaljević, A Tverberg type
theorem for collectively unavoidable complexes, Israel J. Math.
2021



Collectively unavoidable complexes
and moment-angle complexes

Collectively unavoidable families K = 〈Ki〉ri=1 admit a
characterization in the language of generalized moment-angle
complexes.
Proposition: Let X be a topological space and {Ai}ri=1 a
family of its subspaces which are complementary in the sense
that X = Ai ∪ Aj for each i 6= j . Then if
K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a collectively r -unavoidable
family of subcomplexes of the N-dimensional simplex
∆N = 2[N+1] then

XN+1 = ZK1(X ,A1) ∪ · · · ∪ ZKr (X ,Ar) . (20)

Conversely, if (20) holds for each X and each family {Ai}ri=1
of complementary subspaces in X then K = 〈Ki〉ri=1 is a
collectively r -unavoidable family of simplicial complexes.



Proof of the Proposition
It follows from the definition that

ZKi (X ,Ai) = {x ∈ XN+1 | Mi(x) ∈ Ki}
where Mi(x) := {j ∈ [N + 1] | xj /∈ Ai}.
Ai ∪ Aj = X for each i 6= j implies Mi(x) ∩Mj(x) = ∅. By
collective unavoidability of K = 〈Ki〉ri=1, for each x ∈ XN+1

there exists i ∈ [r ] such that {Mi(x) ∈ Ki}, and the relation
(20) is an immediate consequence.
Conversely, assume that K = 〈Ki〉ri=1 is not collectively
unavoidable. By definition there exist pairwise disjoint subsets
{Mj}rj=1 of [N + 1] such that Mi /∈ Ki for each i ∈ [r ]. Let
X = [N + 1] and let Ai := [N + 1] \Mi . Let x : [N + 1]→ X
be the identity map, (xi = i for each i ∈ [N + 1]). Then,

x ∈ XN+1 \
r⋃

i=1
ZKi (X ,Ai) .



A canonical family of complementary
sets

Let W = ∨m
j=1 Ij = ∨m

j=1[0, 1]j be the Kowalski m-hedgehog
space obtained by gluing m “spikes” along 0. Let Wi are its
(m− 1)-hedgehog subspaces obtained by removing the spike Ii .
Then {Wi}mi=1 is a family of complementary set and if
K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a collectively r -unavoidable
family of complexes then

W N+1 = ZK1(W ,W1) ∪ · · · ∪ ZKr (W ,Wr) . (21)



A central role is played by high connectivity results as
illustrated by:
Theorem: Suppose that K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a
collectively r -unavoidable family of subcomplexes of 2[m].
Then the associated deleted join

DelJoin(K) = K1 ∗∆ K2 ∗∆ · · · ∗∆ Kr

is (m − r − 1)-connected.
D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, Alexander r-tuples and Bier complexes,

Publ. Inst. Math. (Beograd) (N.S.) 104(118) (2018), 1–22.

Recall that DelJoin(K) is a generalized chessboard
complex.



Connection with polyhedral products

Theorem:

Bier(K ) := K ∗∆ K ◦ ' Z̆K (X ;A) ∩ Z̆K◦(X ;B) .

where X = [0, 1],A = [0, 1/2],B = [1/2, 1] and
Z̆K (X ,A) := ZK (X ,A) \ {1/2}m is the “reduced”
moment-angle complex.



Connection with moment-angle
complexes

Theorem:

K1 ∗∆ · · · ∗∆ Kr ' Z̆K1(W ;W1) ∩ · · · ∩ Z̆Kr (W ;Wr)

where W = ∨m
i=1[0, 1] is the Kowalski m-hedgehog space and

Wi are its (m − 1)-hedgehog subspaces. The reduced
moment-angle complex is obtained by removing the point
(0, 0, . . . , 0).




